Kristina G. Hopkins, Labeeb Ahmed, Peter R. Claggett, Samuel Lamont, Marina J. Metes, Gregory B. Noe
{"title":"Mapping stream and floodplain geomorphometry with the Floodplain and Channel Evaluation Tool","authors":"Kristina G. Hopkins, Labeeb Ahmed, Peter R. Claggett, Samuel Lamont, Marina J. Metes, Gregory B. Noe","doi":"10.1111/1752-1688.13163","DOIUrl":null,"url":null,"abstract":"<p>Broad-scale mapping of stream channel and floodplain geomorphic metrics is critical to improve the understanding of geomorphic change, biogeochemical processes, riverine habitat quality, and opportunities for management intervention. The Floodplain and Channel Evaluation Tool (FACET) was developed to provide an open-source tool for automated processing of digital elevation models (DEMs) to generate regional-scale estimates of bank height, channel width, floodplain width, and a suite of other fluvial geomorphic dimensions that can be summarized at the stream reach- or catchment-scale. FACET was tested on 3-m DEMs covering the Delaware River watershed and 85% of the Chesapeake Bay watershed in the United States (U.S.) and on 1-m DEMs for a subset of the study area. Accuracy was assessed from data collected at 67 field sites in the study area. FACET successfully measured geomorphometry for over 270,000 stream reaches (88% of streams attempted) in the study area. Factors that reduced the ability of FACET to accurately estimate geomorphic metrics included errors in DEM hydro-conditioning, gradually sloping banks, incised stream channels, and the use of fixed input parameters to define buffer lengths. Even with these limitations, FACET was able to map regional patterns in stream and floodplain geomorphometry providing a robust dataset that can enhance modeling and management efforts throughout the mid-Atlantic region, U.S.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"60 2","pages":"480-498"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Water Resources Association","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.13163","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Broad-scale mapping of stream channel and floodplain geomorphic metrics is critical to improve the understanding of geomorphic change, biogeochemical processes, riverine habitat quality, and opportunities for management intervention. The Floodplain and Channel Evaluation Tool (FACET) was developed to provide an open-source tool for automated processing of digital elevation models (DEMs) to generate regional-scale estimates of bank height, channel width, floodplain width, and a suite of other fluvial geomorphic dimensions that can be summarized at the stream reach- or catchment-scale. FACET was tested on 3-m DEMs covering the Delaware River watershed and 85% of the Chesapeake Bay watershed in the United States (U.S.) and on 1-m DEMs for a subset of the study area. Accuracy was assessed from data collected at 67 field sites in the study area. FACET successfully measured geomorphometry for over 270,000 stream reaches (88% of streams attempted) in the study area. Factors that reduced the ability of FACET to accurately estimate geomorphic metrics included errors in DEM hydro-conditioning, gradually sloping banks, incised stream channels, and the use of fixed input parameters to define buffer lengths. Even with these limitations, FACET was able to map regional patterns in stream and floodplain geomorphometry providing a robust dataset that can enhance modeling and management efforts throughout the mid-Atlantic region, U.S.
期刊介绍:
JAWRA seeks to be the preeminent scholarly publication on multidisciplinary water resources issues. JAWRA papers present ideas derived from multiple disciplines woven together to give insight into a critical water issue, or are based primarily upon a single discipline with important applications to other disciplines. Papers often cover the topics of recent AWRA conferences such as riparian ecology, geographic information systems, adaptive management, and water policy.
JAWRA authors present work within their disciplinary fields to a broader audience. Our Associate Editors and reviewers reflect this diversity to ensure a knowledgeable and fair review of a broad range of topics. We particularly encourage submissions of papers which impart a ''take home message'' our readers can use.