Rectangular algebras

R. Pöschel, M. Reichel
{"title":"Rectangular algebras","authors":"R. Pöschel, M. Reichel","doi":"10.1109/ISMVL.1992.186804","DOIUrl":null,"url":null,"abstract":"Algebras of the variety RA/sub tau / generated by projection algebras (of type tau ) are called rectangular algebras. It turns out that an algebra (A; F) is rectangular if and only if A can be decomposed in (i.e., encoded by) components in such a way that every term function f:A/sup n/ to A can be performed in parallel and is a projection on each component (algebraically speaking, if is isomorphic to a direct product of projection algebras). A list Sigma /sub tau / of identities that completely characterize rectangular algebras is given. Every term in RA/sub tau / has a normal form. Some algorithms (for decomposition and normal form) and examples for finite algebras of finite type are given.<<ETX>>","PeriodicalId":127091,"journal":{"name":"[1992] Proceedings The Twenty-Second International Symposium on Multiple-Valued Logic","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings The Twenty-Second International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1992.186804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Algebras of the variety RA/sub tau / generated by projection algebras (of type tau ) are called rectangular algebras. It turns out that an algebra (A; F) is rectangular if and only if A can be decomposed in (i.e., encoded by) components in such a way that every term function f:A/sup n/ to A can be performed in parallel and is a projection on each component (algebraically speaking, if is isomorphic to a direct product of projection algebras). A list Sigma /sub tau / of identities that completely characterize rectangular algebras is given. Every term in RA/sub tau / has a normal form. Some algorithms (for decomposition and normal form) and examples for finite algebras of finite type are given.<>
矩形代数
由投影代数(类型为tau)生成的RA/sub /类型的代数称为矩形代数。事实证明代数(A;F)是矩形的,当且仅当A可以分解为(即由)分量来编码,使得每个项函数F:A/sup n/ to A可以并行执行,并且是每个分量上的投影(从代数上讲,它同构于投影代数的直积)。给出了一个完整表征矩形代数的恒等式列表。RA/中的每一项都有一个正规形式。给出了有限型有限代数的一些算法(分解算法和范式算法)和实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信