Evaluating the manufacturability of GaAs/AlGaAs multiple quantum well avalanche photodiodes using neural networks

I. Yun, G. May
{"title":"Evaluating the manufacturability of GaAs/AlGaAs multiple quantum well avalanche photodiodes using neural networks","authors":"I. Yun, G. May","doi":"10.1109/IEMT.1997.626885","DOIUrl":null,"url":null,"abstract":"This paper presents a novel methodology for the parametric yield prediction of GaAs/AlGaAs multiple quantum well (MQW) avalanche photodiodes (APDs). Even in a defect-free manufacturing environment, random variations in the APD fabrication process lead to varying levels of device performance. Accurate performance prediction requires precise characterization of these variations. The approach described herein requires a model of the probability distribution of each of the relevant process variables, as well as a model to account for the correlation between this measured process data and device performance metrics. Neural networks are proposed as a tool for generating these models, which enable the computation of the joint density function required for predicting performance using Jacobian transformation method. The resulting density function can then be numerically integrated to determine parametric yield. In applying this methodology to MQW APDs, using a small number of test devices enables accurate prediction of the expected performance variation of APD gain and noise in larger populations of devices. This approach potentially allows yield estimation prior to high volume manufacturing.","PeriodicalId":227971,"journal":{"name":"Twenty First IEEE/CPMT International Electronics Manufacturing Technology Symposium Proceedings 1997 IEMT Symposium","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Twenty First IEEE/CPMT International Electronics Manufacturing Technology Symposium Proceedings 1997 IEMT Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMT.1997.626885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel methodology for the parametric yield prediction of GaAs/AlGaAs multiple quantum well (MQW) avalanche photodiodes (APDs). Even in a defect-free manufacturing environment, random variations in the APD fabrication process lead to varying levels of device performance. Accurate performance prediction requires precise characterization of these variations. The approach described herein requires a model of the probability distribution of each of the relevant process variables, as well as a model to account for the correlation between this measured process data and device performance metrics. Neural networks are proposed as a tool for generating these models, which enable the computation of the joint density function required for predicting performance using Jacobian transformation method. The resulting density function can then be numerically integrated to determine parametric yield. In applying this methodology to MQW APDs, using a small number of test devices enables accurate prediction of the expected performance variation of APD gain and noise in larger populations of devices. This approach potentially allows yield estimation prior to high volume manufacturing.
利用神经网络评估GaAs/AlGaAs多量子阱雪崩光电二极管的可制造性
本文提出了一种用于GaAs/AlGaAs多量子阱雪崩光电二极管参量产率预测的新方法。即使在无缺陷的制造环境中,APD制造过程中的随机变化也会导致不同水平的设备性能。准确的性能预测需要精确地描述这些变化。本文所描述的方法需要每个相关过程变量的概率分布模型,以及用于解释此测量过程数据和设备性能指标之间相关性的模型。提出了神经网络作为生成这些模型的工具,该模型能够使用雅可比变换方法计算预测性能所需的联合密度函数。然后可以对得到的密度函数进行数值积分以确定参数屈服。在将此方法应用于MQW APD时,使用少量测试设备可以准确预测APD增益和噪声在大量设备中的预期性能变化。这种方法可以在大批量生产之前进行产量估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信