{"title":"An event-driven simulation methodology for integrated switching power supplies in SystemVerilog","authors":"Jieun Jang, Myeong-Jae Park, Jaeha Kim","doi":"10.1145/2463209.2488903","DOIUrl":null,"url":null,"abstract":"Emerging power-supply-on-chip applications such as on-chip DCDC conversion, energy harvesting, and LED drivers use switching regulator ICs integrated with digital controllers. Although the resulting mixed-signal systems call for efficient system-level behavioral simulation, this remains difficult due to the fast switching and slow transients of the regulator and the high complexity of the controller. This paper presents a truly event-driven approach for modeling and simulating such integrated power systems entirely in SystemVerilog. By modeling various switching regulator topologies as switched linear networks whose responses can be expressed as a sum of complex exponentials, ctm-1e-atu(t), the accurate voltage/current waveforms can be captured by updating the coefficients, c, at each input or switching event. The model is applied to two examples, a power factor corrector and switched-capacitor DC-DC converter, and the results demonstrate that the proposed simulator can achieve 20~100× improvements in speed while maintaining SPICE-level accuracy in evaluating power efficiency, steady-state ripples, and power factor.","PeriodicalId":320207,"journal":{"name":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2463209.2488903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Emerging power-supply-on-chip applications such as on-chip DCDC conversion, energy harvesting, and LED drivers use switching regulator ICs integrated with digital controllers. Although the resulting mixed-signal systems call for efficient system-level behavioral simulation, this remains difficult due to the fast switching and slow transients of the regulator and the high complexity of the controller. This paper presents a truly event-driven approach for modeling and simulating such integrated power systems entirely in SystemVerilog. By modeling various switching regulator topologies as switched linear networks whose responses can be expressed as a sum of complex exponentials, ctm-1e-atu(t), the accurate voltage/current waveforms can be captured by updating the coefficients, c, at each input or switching event. The model is applied to two examples, a power factor corrector and switched-capacitor DC-DC converter, and the results demonstrate that the proposed simulator can achieve 20~100× improvements in speed while maintaining SPICE-level accuracy in evaluating power efficiency, steady-state ripples, and power factor.