Blind deconvolution using maximum a posteriori estimates with dictionary learning

V. Maik, Seonhee Park, J. Paik
{"title":"Blind deconvolution using maximum a posteriori estimates with dictionary learning","authors":"V. Maik, Seonhee Park, J. Paik","doi":"10.1109/ICCE-ASIA.2016.7804725","DOIUrl":null,"url":null,"abstract":"Blind deconvolution aims to obtain the original sharp image from the observed blurred image due to various distortion factors such as noise, out-of-focus, camera shake, etc. The solution to this imaging inverse problem is severely ill-posed and various heuristics in the form of some prior is required to approximate the solution. In this paper, we propose an novel deblurring algorithm using maximum a posteriori (MAP) estimation combined with sparse priors from a previously trained dictionary along with edge prior. The proposed numerical optimization methods can produce results, far better when compared to similar existing state-of-the-art methods.","PeriodicalId":229557,"journal":{"name":"2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-ASIA.2016.7804725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Blind deconvolution aims to obtain the original sharp image from the observed blurred image due to various distortion factors such as noise, out-of-focus, camera shake, etc. The solution to this imaging inverse problem is severely ill-posed and various heuristics in the form of some prior is required to approximate the solution. In this paper, we propose an novel deblurring algorithm using maximum a posteriori (MAP) estimation combined with sparse priors from a previously trained dictionary along with edge prior. The proposed numerical optimization methods can produce results, far better when compared to similar existing state-of-the-art methods.
盲反卷积使用最大后验估计与字典学习
盲反卷积的目的是从观察到的由于噪声、失焦、相机抖动等各种失真因素造成的模糊图像中获得原始的清晰图像。该成像逆问题的解是严重不适定的,需要以某种先验形式的各种启发式方法来逼近解。在本文中,我们提出了一种新的去模糊算法,该算法使用最大后验(MAP)估计结合先前训练字典的稀疏先验和边缘先验。所提出的数值优化方法可以产生的结果,远远优于现有的类似的最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信