Bayesian Autoregressive Time Series Analysis

E. G. Hurst
{"title":"Bayesian Autoregressive Time Series Analysis","authors":"E. G. Hurst","doi":"10.1109/TSSC.1968.300125","DOIUrl":null,"url":null,"abstract":"Two Bayesian autoregressive time series models for partially observable dynamic processes are presented. In the first model, a general inference procedure is developed for the situation in which k previous values of the time series plus a change error determine the next value. This general model is specialized to an example in which the observational and change errors follow a normal probability law; the results for k = 1 are given and discussed. The second general model adds the facility for simultaneously inferring an unknown and unchanging parameter of the time series. This model is specialized to the same normal example presented earlier, with the precision of the change error as the unknown process parameter.","PeriodicalId":120916,"journal":{"name":"IEEE Trans. Syst. Sci. Cybern.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1968-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Syst. Sci. Cybern.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSSC.1968.300125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Two Bayesian autoregressive time series models for partially observable dynamic processes are presented. In the first model, a general inference procedure is developed for the situation in which k previous values of the time series plus a change error determine the next value. This general model is specialized to an example in which the observational and change errors follow a normal probability law; the results for k = 1 are given and discussed. The second general model adds the facility for simultaneously inferring an unknown and unchanging parameter of the time series. This model is specialized to the same normal example presented earlier, with the precision of the change error as the unknown process parameter.
贝叶斯自回归时间序列分析
给出了两个部分可观测动态过程的贝叶斯自回归时间序列模型。在第一个模型中,针对时间序列的k个前一个值加上一个变化误差决定下一个值的情况,开发了一个通用推理过程。这个一般模型专门用于观测误差和变化误差遵循正态概率规律的例子;给出并讨论了k = 1时的结果。第二个通用模型增加了同时推断时间序列的未知和不变参数的功能。该模型专门用于前面提出的相同的正常示例,将更改误差的精度作为未知过程参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信