A simulation based tool to assess the propulsion performance of modern conventional submarines

R. Zaccone, M. Figari, M. Martelli
{"title":"A simulation based tool to assess the propulsion performance of modern conventional submarines","authors":"R. Zaccone, M. Figari, M. Martelli","doi":"10.1109/speedam53979.2022.9842197","DOIUrl":null,"url":null,"abstract":"The propulsion system of modern conventional submarines features multiple energy conversion and storage devices and users, which operate closely interconnected. The basic design and sizing of the components commonly rely on steady-state calculations, neglecting the interactions between the propulsion system components. An adequately tailored simulation-based approach is beneficial to ensure the design fulfills the operating requirements in the advanced design phases. Time-domain simulation provides information otherwise unavailable with standard design tools. Moreover, the decision-making process involved in modeling the system and developing the simulation tool shares several similarities with the actual design of the physical system. This paper proposes a simulation model of the propulsion system of a conventional submarine. The theoretical aspects, hypotheses, and simplifications are first discussed. The proposed approach is then applied to a case study to show the potential benefits arising from dynamic simulation when evaluating the performance of a conventional submarine unit.","PeriodicalId":365235,"journal":{"name":"2022 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/speedam53979.2022.9842197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The propulsion system of modern conventional submarines features multiple energy conversion and storage devices and users, which operate closely interconnected. The basic design and sizing of the components commonly rely on steady-state calculations, neglecting the interactions between the propulsion system components. An adequately tailored simulation-based approach is beneficial to ensure the design fulfills the operating requirements in the advanced design phases. Time-domain simulation provides information otherwise unavailable with standard design tools. Moreover, the decision-making process involved in modeling the system and developing the simulation tool shares several similarities with the actual design of the physical system. This paper proposes a simulation model of the propulsion system of a conventional submarine. The theoretical aspects, hypotheses, and simplifications are first discussed. The proposed approach is then applied to a case study to show the potential benefits arising from dynamic simulation when evaluating the performance of a conventional submarine unit.
基于仿真的现代常规潜艇推进性能评估工具
现代常规潜艇的推进系统具有多个能量转换和存储装置和用户,这些装置和用户紧密相连。部件的基本设计和尺寸通常依赖于稳态计算,而忽略了推进系统部件之间的相互作用。充分定制的基于仿真的方法有助于确保设计在高级设计阶段满足操作要求。时域仿真提供了标准设计工具无法提供的信息。此外,系统建模和开发仿真工具所涉及的决策过程与物理系统的实际设计有几个相似之处。提出了一种常规潜艇推进系统的仿真模型。首先讨论了理论方面、假设和简化。然后将所提出的方法应用于一个案例研究,以显示在评估常规潜艇单元性能时动态模拟所带来的潜在好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信