Using ontologies for dataset engineering in automotive AI applications

Martin Herrmann, Christian Witt, Laureen Lake, Stefani Guneshka, Christian Heinzemann, Frank Bonarens, P. Feifel, Simon Funke
{"title":"Using ontologies for dataset engineering in automotive AI applications","authors":"Martin Herrmann, Christian Witt, Laureen Lake, Stefani Guneshka, Christian Heinzemann, Frank Bonarens, P. Feifel, Simon Funke","doi":"10.23919/DATE54114.2022.9774675","DOIUrl":null,"url":null,"abstract":"Basis of a robust safety strategy for an automated driving function based on neural networks is a detailed description of its input domain, i.e. a description of the environment, in which the function is used. This is required to describe its functional system boundaries and to perform a comprehensive safety analysis. Moreover, it allows to tailor datasets specifically designed for safety related validation tests. Ontologies fulfill the task to gather expert knowledge and model information to enable computer aided processing, while using a notion understandable for humans. In this contribution, we propose a methodology for domain analysis to build up an ontology for perception of autonomous vehicles including characteristic features that become important when dealing with neural networks. Additionally, the method is demonstrated by the creation of a synthetic test dataset for an Euro NCAP-like use case.","PeriodicalId":232583,"journal":{"name":"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE54114.2022.9774675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Basis of a robust safety strategy for an automated driving function based on neural networks is a detailed description of its input domain, i.e. a description of the environment, in which the function is used. This is required to describe its functional system boundaries and to perform a comprehensive safety analysis. Moreover, it allows to tailor datasets specifically designed for safety related validation tests. Ontologies fulfill the task to gather expert knowledge and model information to enable computer aided processing, while using a notion understandable for humans. In this contribution, we propose a methodology for domain analysis to build up an ontology for perception of autonomous vehicles including characteristic features that become important when dealing with neural networks. Additionally, the method is demonstrated by the creation of a synthetic test dataset for an Euro NCAP-like use case.
在汽车人工智能应用中使用本体进行数据集工程
基于神经网络的自动驾驶功能鲁棒安全策略的基础是对其输入域的详细描述,即对该功能使用的环境的描述。这需要描述其功能系统边界并进行全面的安全分析。此外,它允许定制专门为安全相关验证测试设计的数据集。本体完成了收集专家知识和模型信息以支持计算机辅助处理的任务,同时使用了人类可以理解的概念。在这篇文章中,我们提出了一种领域分析方法,用于建立自动驾驶汽车感知的本体,包括在处理神经网络时变得重要的特征。此外,通过为类似Euro ncap的用例创建一个合成测试数据集来演示该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信