Fuzzy adaptive noise filtering and vibration control for a flexible robot

A. Green, J. Sasiadek
{"title":"Fuzzy adaptive noise filtering and vibration control for a flexible robot","authors":"A. Green, J. Sasiadek","doi":"10.1109/ROMOCO.2005.201445","DOIUrl":null,"url":null,"abstract":"End effector tracking of a two-link flexible robot is simulated using a linear quadratic Gaussian (LQG) dynamic regulator with an extended Kalman filter (EKF), a LQG with fuzzy logic adaptive EKF (FLAEKF), LQG with an EKF and a FLAEKF combined with time delays in the feedback loop to model nonminimum phase (NMP) response for a sensor noncollocated at the end effector and in the feed forward loop for corrective control action. A fuzzy logic system (FLS) vibration suppression control strategy is simulated for comparison. Results demonstrate FLS adaptive vibration suppression produces greater tracking accuracy than an EKF, FLAEKF or corrective time delays. In comparison with classical FID control or even with more advanced adaptive control strategies FLS vibration suppression gives better tracking control while execution time remains acceptable.","PeriodicalId":142727,"journal":{"name":"Proceedings of the Fifth International Workshop on Robot Motion and Control, 2005. RoMoCo '05.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Workshop on Robot Motion and Control, 2005. RoMoCo '05.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMOCO.2005.201445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

End effector tracking of a two-link flexible robot is simulated using a linear quadratic Gaussian (LQG) dynamic regulator with an extended Kalman filter (EKF), a LQG with fuzzy logic adaptive EKF (FLAEKF), LQG with an EKF and a FLAEKF combined with time delays in the feedback loop to model nonminimum phase (NMP) response for a sensor noncollocated at the end effector and in the feed forward loop for corrective control action. A fuzzy logic system (FLS) vibration suppression control strategy is simulated for comparison. Results demonstrate FLS adaptive vibration suppression produces greater tracking accuracy than an EKF, FLAEKF or corrective time delays. In comparison with classical FID control or even with more advanced adaptive control strategies FLS vibration suppression gives better tracking control while execution time remains acceptable.
柔性机器人的模糊自适应噪声滤波与振动控制
采用带扩展卡尔曼滤波(EKF)的线性二次高斯(LQG)动态调节器、带模糊逻辑自适应EKF (FLAEKF)的LQG、带EKF的LQG和带时间延迟的FLAEKF在反馈回路中模拟了末端执行器和前馈回路中传感器非配置的非最小相位(NMP)响应,对两连杆柔性机器人的末端执行器跟踪进行了仿真。对模糊逻辑系统(FLS)振动抑制控制策略进行了仿真比较。结果表明,FLS自适应振动抑制比EKF、FLAEKF或校正时滞产生更高的跟踪精度。与经典FID控制甚至更先进的自适应控制策略相比,FLS振动抑制在执行时间仍然可以接受的情况下提供了更好的跟踪控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信