Mehmet Ariman, Lal Verda Çakır, Mehmet Özdem, B. Canberk
{"title":"Opportunistic RL-based WiFi Access for Aerial Sensor Nodes in Smart City Applications","authors":"Mehmet Ariman, Lal Verda Çakır, Mehmet Özdem, B. Canberk","doi":"10.1109/SmartNets58706.2023.10215658","DOIUrl":null,"url":null,"abstract":"Unmanned air vehicles are becoming widespread, driven by improved wireless technologies. However, the WiFi technology used for communication has a highly crowded and unevenly distributed channel occupancy in its spectrum. To overcome this, WiFi resources need to be utilized efficiently. Therefore, this paper proposes the Opportunistic Reinforcement Learning-based WiFi Access scheme, which exploits intermittent channel occupancy to solve the NP-hard channel assignment problem. As a result, the proposed model has improved the accurate channel selection on the UAVs by 9%, performing 91% accuracy, compared to the trivial channel scoring-based selection algorithms.","PeriodicalId":301834,"journal":{"name":"2023 International Conference on Smart Applications, Communications and Networking (SmartNets)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Smart Applications, Communications and Networking (SmartNets)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartNets58706.2023.10215658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Unmanned air vehicles are becoming widespread, driven by improved wireless technologies. However, the WiFi technology used for communication has a highly crowded and unevenly distributed channel occupancy in its spectrum. To overcome this, WiFi resources need to be utilized efficiently. Therefore, this paper proposes the Opportunistic Reinforcement Learning-based WiFi Access scheme, which exploits intermittent channel occupancy to solve the NP-hard channel assignment problem. As a result, the proposed model has improved the accurate channel selection on the UAVs by 9%, performing 91% accuracy, compared to the trivial channel scoring-based selection algorithms.