J. Namayanja, V. Janeja
{"title":"Subspace Discovery for Disease Management: A Case Study in Metabolic Syndrome","authors":"J. Namayanja, V. Janeja","doi":"10.4018/jcmam.2011010103","DOIUrl":null,"url":null,"abstract":"This paper identifies key subspaces for better disease management. Disease affects individuals differently based on features such as age, race, and gender. The authors use data mining methods to discover which key factors of a disease are more relevant for particular strata of the population using bin wise clustering. The authors use a case study on Metabolic Syndrome (MetS). MetS is a combination of abnormalities that occur in the body during the processing of food and nutrients. A number of definitions have been studied to classify MetS. No clear criterion exists that can generally fit into a single satisfactory protocol. This domain encompasses a variety of demographics in society, leading to an implication that different criteria may be appropriate for different demographic strata. The authors address this issue and identify the cross section of demographic strata and the disease characteristics that are critical for understanding the disease in that subset of the population. Findings in real world NHANESIII data support this hypothesis, thus the approach can be used by clinical scientists to narrow down specific demographic pools to further study impacts of key MetS characteristics. subsets in the data. Essentially we focus on using data mining methods to discover which key factors of a disease are more relevant for particular strata of the population using bin wise clustering. We focus on a case study in Metabolic Syndrome (MetS). MetS can be described as a combination of abnormalities that occur in the body during the processing of food and nutrients (Wright, 2005). A number of definitions have been studied to classify MetS; however, there is no clear criterion that can generally fit into a single satisfactory protocol. This is primarily because this domain encompasses quite a DOI: 10.4018/jcmam.2011010103 International Journal of Computational Models and Algorithms in Medicine, 2(1), 38-59, January-March 2011 39 Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. variety of demographics in society leading to an implication that different criteria may be appropriate for different demographic strata. Our research addresses this issue and identifies the cross section of demographic strata and the disease characteristics which are critical for understanding the disease in that subset of the population. We begin by first outlining the motivation of the case study by discussing the challenges in studying Metabolic Syndrome in general and then outlining the data mining challenges.","PeriodicalId":162417,"journal":{"name":"Int. J. Comput. Model. Algorithms Medicine","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Model. Algorithms Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jcmam.2011010103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
疾病管理的子空间发现:以代谢综合征为例
本文确定了更好的疾病管理的关键子空间。疾病对个体的影响因年龄、种族和性别等特征而异。作者使用数据挖掘方法来发现疾病的哪些关键因素与使用bin智能聚类的人群的特定阶层更相关。作者以代谢综合征(MetS)为例进行了研究。代谢代谢是机体在处理食物和营养物质过程中发生的一系列异常。已经研究了许多定义来对MetS进行分类。没有一个明确的标准可以概括成一个令人满意的协议。这一领域包括社会中的各种人口统计数据,这意味着不同的标准可能适用于不同的人口阶层。作者解决了这个问题,并确定了人口阶层的横截面和疾病特征,这对于了解该人群中的疾病至关重要。现实世界NHANESIII数据的发现支持这一假设,因此临床科学家可以使用该方法来缩小特定的人口统计池,以进一步研究关键MetS特征的影响。数据中的子集。从本质上讲,我们专注于使用数据挖掘方法来发现疾病的哪些关键因素与使用bin智能聚类的特定人群更相关。我们专注于代谢综合征(MetS)的案例研究。MetS可以被描述为在食物和营养物质加工过程中发生的身体异常的组合(Wright, 2005)。已经研究了许多定义来对MetS进行分类;然而,目前还没有明确的标准可以概括成一个令人满意的协议。这主要是因为这个域包含了一个DOI: 10.4018/jcmam.2011010103国际医学计算模型与算法杂志,2(1),38-59,2011年1月- 3月39版权所有©2011,IGI Global。未经IGI Global书面许可,禁止以印刷或电子形式复制或分发。社会人口结构的多样性意味着不同的标准可能适用于不同的人口阶层。我们的研究解决了这个问题,并确定了人口阶层的横截面和疾病特征,这对于了解该人群中的疾病至关重要。我们首先概述了案例研究的动机,讨论了研究代谢综合征的挑战,然后概述了数据挖掘的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。