CChi: An efficient cloud epistasis test model in human genome wide association studies

Zhihui Zhou, Guixia Liu, Lingtao Su, Lun Yan, Liang Han
{"title":"CChi: An efficient cloud epistasis test model in human genome wide association studies","authors":"Zhihui Zhou, Guixia Liu, Lingtao Su, Lun Yan, Liang Han","doi":"10.1109/BMEI.2013.6747047","DOIUrl":null,"url":null,"abstract":"Due to the vast amounts of SNPs and huge search space, how to decrease the total computation costs is a challenge in genome wide association studies (GWAS). Triggered by this problem, we develop an effective and efficient algorithm for epistasis detection in GWAS. We propose a cloud-based algorithm using chi-square test, denoted as CChi. CChi adopts a pruning strategy by utilizing an upper bound to prune amounts of unnecessary SNP pairs, and is implemented under Google's MapReduce framework. A best-fit model is proposed by us to distribute SNP pairs to each reducer. Extensive experimental results demonstrate that CChi is practically and computationally efficient.","PeriodicalId":163211,"journal":{"name":"2013 6th International Conference on Biomedical Engineering and Informatics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 6th International Conference on Biomedical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEI.2013.6747047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Due to the vast amounts of SNPs and huge search space, how to decrease the total computation costs is a challenge in genome wide association studies (GWAS). Triggered by this problem, we develop an effective and efficient algorithm for epistasis detection in GWAS. We propose a cloud-based algorithm using chi-square test, denoted as CChi. CChi adopts a pruning strategy by utilizing an upper bound to prune amounts of unnecessary SNP pairs, and is implemented under Google's MapReduce framework. A best-fit model is proposed by us to distribute SNP pairs to each reducer. Extensive experimental results demonstrate that CChi is practically and computationally efficient.
人类基因组广泛关联研究中一种有效的云上位测试模型
由于大量的snp和巨大的搜索空间,如何降低总计算成本是基因组全关联研究(GWAS)的一个挑战。针对这一问题,我们开发了一种高效的GWAS上位性检测算法。我们提出了一种基于云的算法,使用卡方检验,记为CChi。CChi采用了一种修剪策略,利用上限来修剪不必要的SNP对,并在谷歌的MapReduce框架下实现。我们提出了一个最适合的模型来分配SNP对到每个减速机。大量的实验结果表明,CChi具有实用和计算效率高的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信