Automatic Analysis of Brain Tumor from Magnetic Resonance Images based on Geometric Median Shift

M. Gouskir, M.A. Zyad, M. Boutalline
{"title":"Automatic Analysis of Brain Tumor from Magnetic Resonance Images based on Geometric Median Shift","authors":"M. Gouskir, M.A. Zyad, M. Boutalline","doi":"10.1109/ICOA49421.2020.9094453","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an automated approach based on the geometric median shift algorithm over Riemannian manifolds, for the brain tumor detection and segmentation in magnetic resonance images (MRI). This approach is based on the geometric median, geodesic distance. We propose the median shift to overcome the limitation of mean which is not necessary a point in a set. The geodesic distance can describe data points distributed on a manifold, compared to the Euclidean distance, and produce efficient results for image analysis. Coupled with k-means algorithm, the proposed framework can cluster the brain image into tree regions (gray matter, white matter and cerebrospinal fluid) and abnormalities regions. We applied this approach to clustering the brain tissues and brain tumor segmentation, which is validated on a synthetic brain MRI. The obtained results using two datasets show the efficiency of the used algorithm validated qualitatively by the measurement of Dice Similarity Coefficient.","PeriodicalId":253361,"journal":{"name":"2020 IEEE 6th International Conference on Optimization and Applications (ICOA)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 6th International Conference on Optimization and Applications (ICOA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOA49421.2020.9094453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose an automated approach based on the geometric median shift algorithm over Riemannian manifolds, for the brain tumor detection and segmentation in magnetic resonance images (MRI). This approach is based on the geometric median, geodesic distance. We propose the median shift to overcome the limitation of mean which is not necessary a point in a set. The geodesic distance can describe data points distributed on a manifold, compared to the Euclidean distance, and produce efficient results for image analysis. Coupled with k-means algorithm, the proposed framework can cluster the brain image into tree regions (gray matter, white matter and cerebrospinal fluid) and abnormalities regions. We applied this approach to clustering the brain tissues and brain tumor segmentation, which is validated on a synthetic brain MRI. The obtained results using two datasets show the efficiency of the used algorithm validated qualitatively by the measurement of Dice Similarity Coefficient.
基于几何中值移位的磁共振图像脑肿瘤自动分析
本文提出了一种基于黎曼流形几何中值移位算法的脑肿瘤检测与分割方法。这种方法是基于几何中值,测地线距离。我们提出中位数移位来克服均值的局限性,即均值不一定是集合中的一个点。与欧氏距离相比,测地线距离可以描述分布在流形上的数据点,并产生有效的图像分析结果。结合k-means算法,该框架可以将脑图像聚类为树形区域(灰质、白质和脑脊液)和异常区域。我们将这种方法应用于脑组织聚类和脑肿瘤分割,这在合成脑MRI上得到了验证。两个数据集的结果表明,通过骰子相似系数的测量,该算法的有效性得到了定性验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信