On Approximation Properties of Stancu Type Post-Widder Operators Preserving Exponential Functions

Gülten Torun
{"title":"On Approximation Properties of Stancu Type Post-Widder Operators Preserving Exponential Functions","authors":"Gülten Torun","doi":"10.54287/gujsa.1113567","DOIUrl":null,"url":null,"abstract":"In this article, Stancu type Post-Widder operators are introduced, which are a modification of the Post-Widder operators that preserve the functions constant and e^2ax for fixed a>0. The uniform convergence of these modified operators for the function f on [0,∞) is examined and then the convergence rate is investigated with the help of the continuity module. The Voronovskaja type asymptotic formula is obtained to examine the asymptotic behavior of these operators. Finally, numerical examples and graphs are given to show the convergence of Stancu type Post- Widder operators and compared with Post Widder operators.","PeriodicalId":134301,"journal":{"name":"Gazi University Journal of Science Part A: Engineering and Innovation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gazi University Journal of Science Part A: Engineering and Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54287/gujsa.1113567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, Stancu type Post-Widder operators are introduced, which are a modification of the Post-Widder operators that preserve the functions constant and e^2ax for fixed a>0. The uniform convergence of these modified operators for the function f on [0,∞) is examined and then the convergence rate is investigated with the help of the continuity module. The Voronovskaja type asymptotic formula is obtained to examine the asymptotic behavior of these operators. Finally, numerical examples and graphs are given to show the convergence of Stancu type Post- Widder operators and compared with Post Widder operators.
关于保持指数函数的标准型后广义算子的逼近性质
在本文中,介绍了standu类型Post-Widder操作符,它是Post-Widder操作符的一种修改,用于在固定a>0时保持函数常数和e^2ax。研究了这些修正算子对函数f在[0,∞)上的一致收敛性,并利用连续性模研究了收敛速度。得到了Voronovskaja型渐近公式来检验这些算子的渐近性。最后,用数值算例和图说明了Stancu型Post- Widder算子的收敛性,并与Post- Widder算子进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信