Propensity-Dependent Model for Unbiased Learning-to-Rank

Haochen Zhang, Ziqing Wu, Zhuoran Peng, Tiancheng Luo, Xianna Weng
{"title":"Propensity-Dependent Model for Unbiased Learning-to-Rank","authors":"Haochen Zhang, Ziqing Wu, Zhuoran Peng, Tiancheng Luo, Xianna Weng","doi":"10.1145/3582084.3582085","DOIUrl":null,"url":null,"abstract":"Most present unbiased learning-to-rank models are based on the trust bias assumption to learn a ranking policy by Inverse Propensity Scoring (IPS). The trust bias assumption improves the unrealistic noise-free assumption in the Position-Based model, but it assumes that the propensities are independent. In this paper, we improve this assumption and consider that the propensities of different positions are relevant. In particular, we model the relationship between different propensities as a Propensity-Dependent model and use both IPS estimator and the Doubly Robust estimator to learn the optimal ranking policy. Finally, we generate the dataset in a simulated study and then evaluate the model's performance.","PeriodicalId":177325,"journal":{"name":"Proceedings of the 2022 4th International Conference on Software Engineering and Development","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 4th International Conference on Software Engineering and Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3582084.3582085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Most present unbiased learning-to-rank models are based on the trust bias assumption to learn a ranking policy by Inverse Propensity Scoring (IPS). The trust bias assumption improves the unrealistic noise-free assumption in the Position-Based model, but it assumes that the propensities are independent. In this paper, we improve this assumption and consider that the propensities of different positions are relevant. In particular, we model the relationship between different propensities as a Propensity-Dependent model and use both IPS estimator and the Doubly Robust estimator to learn the optimal ranking policy. Finally, we generate the dataset in a simulated study and then evaluate the model's performance.
无偏排序学习的倾向依赖模型
目前大多数无偏排序学习模型都是基于信任偏差假设,通过逆倾向评分(IPS)来学习排序策略。信任偏差假设改进了基于位置模型中不切实际的无噪声假设,但它假设倾向是独立的。在本文中,我们改进了这一假设,并考虑到不同位置的倾向是相关的。特别地,我们将不同倾向之间的关系建模为倾向依赖模型,并使用IPS估计器和双鲁棒估计器来学习最优排序策略。最后,我们在模拟研究中生成数据集,然后评估模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信