Compressed sensing HARDI via rotation-invariant concise dictionaries, flexible K-space undersampling, and multiscale spatial regularity

Suyash P. Awate, E. D. Bella
{"title":"Compressed sensing HARDI via rotation-invariant concise dictionaries, flexible K-space undersampling, and multiscale spatial regularity","authors":"Suyash P. Awate, E. D. Bella","doi":"10.1109/ISBI.2013.6556399","DOIUrl":null,"url":null,"abstract":"Current methods to reduce acquisition time for high angular resolution diffusion imaging (HARDI) (i) employ large dictionaries where atoms explicitly model finitely-many tract orientations, limiting estimation accuracy of the true tract orientation, (ii) subsample gradient directions only, ignoring k-space undersampling for diffusion-weighted images, (iii) restrict to sparse models that use either frames or dictionaries, and (iv) enforce spatial regularity by penalizing total variation. This paper proposes rotation-invariant dictionaries, enabling a concise dictionary (few atoms representing key diffusion-signal types) by explicitly optimizing the rotation for each atom during sparse fitting. The proposed framework generalizes undersampling strategies to both k-space and gradient directions, thereby enabling a balanced undersampling of k-space over all directions. This paper combines frames and dictionaries for sparse modeling HARDI images. The frame model reduces the need for large intricate dictionaries and enforces spatial regularity over multiple scales. Results on simulated and clinical undersampled HARDI show improved reconstructions via the proposed framework.","PeriodicalId":178011,"journal":{"name":"2013 IEEE 10th International Symposium on Biomedical Imaging","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 10th International Symposium on Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2013.6556399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Current methods to reduce acquisition time for high angular resolution diffusion imaging (HARDI) (i) employ large dictionaries where atoms explicitly model finitely-many tract orientations, limiting estimation accuracy of the true tract orientation, (ii) subsample gradient directions only, ignoring k-space undersampling for diffusion-weighted images, (iii) restrict to sparse models that use either frames or dictionaries, and (iv) enforce spatial regularity by penalizing total variation. This paper proposes rotation-invariant dictionaries, enabling a concise dictionary (few atoms representing key diffusion-signal types) by explicitly optimizing the rotation for each atom during sparse fitting. The proposed framework generalizes undersampling strategies to both k-space and gradient directions, thereby enabling a balanced undersampling of k-space over all directions. This paper combines frames and dictionaries for sparse modeling HARDI images. The frame model reduces the need for large intricate dictionaries and enforces spatial regularity over multiple scales. Results on simulated and clinical undersampled HARDI show improved reconstructions via the proposed framework.
压缩感知HARDI通过旋转不变简洁字典,灵活的k空间欠采样和多尺度空间规则
当前减少高角分辨率扩散成像(HARDI)采集时间的方法(i)使用大型字典,其中原子明确地模拟有限多个通道方向,限制了真实通道方向的估计精度,(ii)仅子样本梯度方向,忽略扩散加权图像的k空间欠采样,(iii)限制使用帧或字典的稀疏模型,以及(iv)通过惩罚总变化来强制执行空间规则。本文提出了旋转不变字典,通过在稀疏拟合期间显式优化每个原子的旋转来实现简明字典(几个原子代表关键的扩散信号类型)。该框架将欠采样策略推广到k空间和梯度方向,从而实现k空间在所有方向上的平衡欠采样。本文结合帧和字典对HARDI图像进行稀疏建模。框架模型减少了对大型复杂字典的需求,并在多个尺度上强制执行空间规则。模拟和临床欠采样HARDI的结果表明,通过所提出的框架可以改善重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信