Feed-forward Neural Network Classifiers with Bithreshold-like Activations

V. Kotsovsky, A. Batyuk
{"title":"Feed-forward Neural Network Classifiers with Bithreshold-like Activations","authors":"V. Kotsovsky, A. Batyuk","doi":"10.1109/CSIT56902.2022.10000739","DOIUrl":null,"url":null,"abstract":"The paper deals with the issues concerning the modifications of the bithreshold neuron whose activation functions provide better ability of the solving the classification problems. The model of smoothed local bithreshold neuron is proposed, which is capable to recognize compact finite set of patterns in n-dimensional space. We design a binary classifier on the base of the feed-forward neural network whose hidden layer consists of such neurons with modified activations, propose the synthesis algorithm and estimate its time complexity alongside with the networks size. The simulation results demonstrate that the application of modified activations improves the accuracy of classification.","PeriodicalId":282561,"journal":{"name":"2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSIT56902.2022.10000739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The paper deals with the issues concerning the modifications of the bithreshold neuron whose activation functions provide better ability of the solving the classification problems. The model of smoothed local bithreshold neuron is proposed, which is capable to recognize compact finite set of patterns in n-dimensional space. We design a binary classifier on the base of the feed-forward neural network whose hidden layer consists of such neurons with modified activations, propose the synthesis algorithm and estimate its time complexity alongside with the networks size. The simulation results demonstrate that the application of modified activations improves the accuracy of classification.
类双阈值激活的前馈神经网络分类器
本文讨论了双阈值神经元的修正问题,双阈值神经元的激活函数能更好地解决分类问题。提出了光滑局部二阈值神经元模型,该模型能够识别n维空间中紧凑的有限模式集。我们在前馈神经网络的基础上设计了一个二值分类器,该网络的隐层由这些神经元组成,具有修正的激活,提出了综合算法,并估计了其时间复杂度和网络大小。仿真结果表明,修正激活的应用提高了分类的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信