A 1-to-4b 16.8-POPS/W 473-TOPS/mm2 6T-based In-Memory Computing SRAM in 22nm FD-SOI with Multi-Bit Analog Batch-Normalization

Adrian Kneip, M. Lefebvre, Julien Verecken, D. Bol
{"title":"A 1-to-4b 16.8-POPS/W 473-TOPS/mm2 6T-based In-Memory Computing SRAM in 22nm FD-SOI with Multi-Bit Analog Batch-Normalization","authors":"Adrian Kneip, M. Lefebvre, Julien Verecken, D. Bol","doi":"10.1109/ESSCIRC55480.2022.9911348","DOIUrl":null,"url":null,"abstract":"Computing in-memory (CIM) is rapidly becoming an enticing solution to accelerate convolutional neural networks (CNNs) at the edge. Yet, low-precision current-based CIM-SRAMs face severe SNR degradation due to numerous analog non-idealities and high quantization noise when performing analog-to-digital conversion prior to digital batch-normalization (DBN). In this paper, we propose a dual-supply 1-to-4b CIM-SRAM macro in 22nm FD-SOI using 6T foundry bitcells, co-designed with a CIM-aware CNN training framework to overcome these challenges. The macro includes a multi-bit analog BN (ABN) unit combined with self-calibrating dual-phase sense-amplifiers (SCDP-SAs). Measurement results show peak 1b-normalized power and area efficiencies of 16.8POPS/W and 473TOPS/mm2at O.4/0.8V supply and 100 MHz, surpassing existing low-precision designs.","PeriodicalId":168466,"journal":{"name":"ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC55480.2022.9911348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Computing in-memory (CIM) is rapidly becoming an enticing solution to accelerate convolutional neural networks (CNNs) at the edge. Yet, low-precision current-based CIM-SRAMs face severe SNR degradation due to numerous analog non-idealities and high quantization noise when performing analog-to-digital conversion prior to digital batch-normalization (DBN). In this paper, we propose a dual-supply 1-to-4b CIM-SRAM macro in 22nm FD-SOI using 6T foundry bitcells, co-designed with a CIM-aware CNN training framework to overcome these challenges. The macro includes a multi-bit analog BN (ABN) unit combined with self-calibrating dual-phase sense-amplifiers (SCDP-SAs). Measurement results show peak 1b-normalized power and area efficiencies of 16.8POPS/W and 473TOPS/mm2at O.4/0.8V supply and 100 MHz, surpassing existing low-precision designs.
1-to-4b 16.8-POPS/W 473-TOPS/mm2 6 -based in - memory Computing SRAM, 22nm FD-SOI, Multi-Bit Analog Batch-Normalization
内存计算(CIM)正迅速成为在边缘加速卷积神经网络(cnn)的诱人解决方案。然而,在进行数字批量归一化(DBN)之前的模数转换时,低精度电流型cim - sram由于大量的模拟非理想性和高量化噪声而面临严重的信噪比下降。在本文中,我们提出了一个双电源1到4b CIM-SRAM宏,在22nm FD-SOI中使用6T代工位单元,与cim感知CNN训练框架共同设计,以克服这些挑战。该宏包括一个多比特模拟BN (ABN)单元,结合了自校准双相传感器放大器(SCDP-SAs)。测量结果显示,在0.4 /0.8 v电源和100 MHz下,峰值1b归一化功率和面积效率分别为16.8POPS/W和473TOPS/mm2,超过了现有的低精度设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信