{"title":"On-chip calibration of RF detectors by DC stimuli and artificial neural networks","authors":"R. Ramzan, J. Dabrowski","doi":"10.1109/RFIC.2008.4561502","DOIUrl":null,"url":null,"abstract":"In the nanometer regime, especially the RF and analog circuits exhibit wide parameter variability, and consequently every chip produced needs to be tested. On-chip design for testability (DfT) features, which are meant to reduce test time and cost also suffer from parameter variability. Therefore, RF calibration of all on-chip test structures is mandatory. In this paper, artificial neural networks (ANN) are employed as multivariate regression technique to architect a general RF calibration scheme using DC- instead of RF stimuli. This relaxes the routing requirements on a chip for GHz test signals along with the reduction in test time and cost. The RF detector, a key element of a radio front-end DfT circuitry, designed in 65 nm CMOS is used to demonstrate the calibration scheme.","PeriodicalId":253375,"journal":{"name":"2008 IEEE Radio Frequency Integrated Circuits Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Radio Frequency Integrated Circuits Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC.2008.4561502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
In the nanometer regime, especially the RF and analog circuits exhibit wide parameter variability, and consequently every chip produced needs to be tested. On-chip design for testability (DfT) features, which are meant to reduce test time and cost also suffer from parameter variability. Therefore, RF calibration of all on-chip test structures is mandatory. In this paper, artificial neural networks (ANN) are employed as multivariate regression technique to architect a general RF calibration scheme using DC- instead of RF stimuli. This relaxes the routing requirements on a chip for GHz test signals along with the reduction in test time and cost. The RF detector, a key element of a radio front-end DfT circuitry, designed in 65 nm CMOS is used to demonstrate the calibration scheme.