Assessing the Impact of Supporting Information on the Scheduling of Scientific Workflows on Clouds

Eduardo Cotrin Teixeira, Daniel Cordeiro, K. Braghetto
{"title":"Assessing the Impact of Supporting Information on the Scheduling of Scientific Workflows on Clouds","authors":"Eduardo Cotrin Teixeira, Daniel Cordeiro, K. Braghetto","doi":"10.5753/BRESCI.2018.3277","DOIUrl":null,"url":null,"abstract":"Executing scientific workflows in high-performance cloud computing platforms requires the use of scheduling algorithms that allow workflows execution as fast as possible, while minimizing the monetary cost of such executions. In this work we study how the use of supporting information can offer guidance to scheduling algorithms, helping them to devise more efficient execution plans in terms of the total execution time (makespan) and the total monetary cost. Using two large-scale scientific workflows, our experiments showed that simple modifications on a classical scheduling algorithm (HEFT), in conjunction with the appropriate supporting information, could reduce the monetary cost of an execution in up to 59% and reduce the makespan in up to 8.6%.","PeriodicalId":306675,"journal":{"name":"Anais do Brazilian e-Science Workshop (BreSci)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Brazilian e-Science Workshop (BreSci)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/BRESCI.2018.3277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Executing scientific workflows in high-performance cloud computing platforms requires the use of scheduling algorithms that allow workflows execution as fast as possible, while minimizing the monetary cost of such executions. In this work we study how the use of supporting information can offer guidance to scheduling algorithms, helping them to devise more efficient execution plans in terms of the total execution time (makespan) and the total monetary cost. Using two large-scale scientific workflows, our experiments showed that simple modifications on a classical scheduling algorithm (HEFT), in conjunction with the appropriate supporting information, could reduce the monetary cost of an execution in up to 59% and reduce the makespan in up to 8.6%.
评估支持信息对云上科学工作流调度的影响
在高性能云计算平台上执行科学工作流程需要使用调度算法,以尽可能快地执行工作流程,同时将此类执行的货币成本降至最低。在这项工作中,我们研究了支持信息的使用如何为调度算法提供指导,帮助他们在总执行时间(makespan)和总货币成本方面设计更有效的执行计划。使用两个大规模的科学工作流,我们的实验表明,对经典调度算法(HEFT)进行简单的修改,并结合适当的支持信息,可以将执行的货币成本降低高达59%,并将完工时间减少高达8.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信