Classification of Plastic Materials using a Microwave Negative-Order-Resonance Sensor and Support-Vector-Machine

D. Covarrubias-Martínez, O. A. Martínez-Rodríguez, H. Lobato-Morales, J. Medina-Monroy
{"title":"Classification of Plastic Materials using a Microwave Negative-Order-Resonance Sensor and Support-Vector-Machine","authors":"D. Covarrubias-Martínez, O. A. Martínez-Rodríguez, H. Lobato-Morales, J. Medina-Monroy","doi":"10.1109/ARFTG49670.2021.9425184","DOIUrl":null,"url":null,"abstract":"A method for plastic material classification using a negative-order-resonance (NOR) sensor operating at the 2.5 GHz band and support-vector-machine (SVM) for pattern recognition is presented. The proposal experimentally demonstrates the correct classification of different plastic materials based on their dielectric properties, dealing with large sources of uncertainty introduced by pellet measurements such as air gaps and position/dimension of the pellets. The proposed technique results attractive for the plastic industry as it involves a fast and nondestructive process along with the use of small circuit elements.","PeriodicalId":196456,"journal":{"name":"2021 96th ARFTG Microwave Measurement Conference (ARFTG)","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 96th ARFTG Microwave Measurement Conference (ARFTG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARFTG49670.2021.9425184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A method for plastic material classification using a negative-order-resonance (NOR) sensor operating at the 2.5 GHz band and support-vector-machine (SVM) for pattern recognition is presented. The proposal experimentally demonstrates the correct classification of different plastic materials based on their dielectric properties, dealing with large sources of uncertainty introduced by pellet measurements such as air gaps and position/dimension of the pellets. The proposed technique results attractive for the plastic industry as it involves a fast and nondestructive process along with the use of small circuit elements.
基于微波负阶共振传感器和支持向量机的塑料材料分类
提出了一种利用工作在2.5 GHz频段的负阶谐振(NOR)传感器和支持向量机(SVM)进行模式识别的塑料材料分类方法。该提案通过实验证明了基于介电性能对不同塑料材料的正确分类,处理了由颗粒测量(如气隙和颗粒的位置/尺寸)引入的大量不确定性来源。所提出的技术结果对塑料工业有吸引力,因为它涉及到一个快速和非破坏性的过程,以及使用小电路元件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信