Improve the Output from a MCQ Test Item Generator Using Statistical NLP

R. Foster
{"title":"Improve the Output from a MCQ Test Item Generator Using Statistical NLP","authors":"R. Foster","doi":"10.1109/ICALT.2010.104","DOIUrl":null,"url":null,"abstract":"In this study I use statistical Natural Language Processing and adapted Controlled Language methods to preprocess individual documents before they are used as source documents for a system which automatically generates MCQ (Multiple Choice Question) test items. The literature observes that Natural Language Generation system evaluation is nontrivial and so the success of the featured methods is evaluated using a process suited to the featured domain. Generated MCQ test items are combined with items that have been created using traditional methods and then a routine is selected by a domain expert. The results provide some evidence to support the incorporation of some of the featured methods into future versions of the software.","PeriodicalId":166491,"journal":{"name":"2010 10th IEEE International Conference on Advanced Learning Technologies","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 10th IEEE International Conference on Advanced Learning Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICALT.2010.104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this study I use statistical Natural Language Processing and adapted Controlled Language methods to preprocess individual documents before they are used as source documents for a system which automatically generates MCQ (Multiple Choice Question) test items. The literature observes that Natural Language Generation system evaluation is nontrivial and so the success of the featured methods is evaluated using a process suited to the featured domain. Generated MCQ test items are combined with items that have been created using traditional methods and then a routine is selected by a domain expert. The results provide some evidence to support the incorporation of some of the featured methods into future versions of the software.
使用统计NLP改进MCQ测试项生成器的输出
在这项研究中,我使用统计自然语言处理和适应的受控语言方法来预处理单个文档,然后将它们用作自动生成MCQ(多项选择题)测试项目的系统的源文档。文献指出,自然语言生成系统的评价是非平凡的,因此使用适合于特征域的过程来评估特征方法的成功。生成的MCQ测试项目与使用传统方法创建的项目相结合,然后由领域专家选择例程。结果提供了一些证据来支持将一些有特色的方法纳入软件的未来版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信