dtControl: decision tree learning algorithms for controller representation

P. Ashok, Mathias Jackermeier, Pushpak Jagtap, Jan Křetínský, Maximilian Weininger, Majid Zamani
{"title":"dtControl: decision tree learning algorithms for controller representation","authors":"P. Ashok, Mathias Jackermeier, Pushpak Jagtap, Jan Křetínský, Maximilian Weininger, Majid Zamani","doi":"10.1145/3365365.3382220","DOIUrl":null,"url":null,"abstract":"Decision tree learning is a popular classification technique most commonly used in machine learning applications. Recent work has shown that decision trees can be used to represent provably-correct controllers concisely. Compared to representations using lookup tables or binary decision diagrams, decision trees are smaller and more explainable. We present dtControl, an easily extensible tool for representing memoryless controllers as decision trees. We give a comprehensive evaluation of various decision tree learning algorithms applied to 10 case studies arising out of correct-by-construction controller synthesis. These algorithms include two new techniques, one for using arbitrary linear binary classifiers in the decision tree learning, and one novel approach for determinizing controllers during the decision tree construction. In particular the latter turns out to be extremely efficient, yielding decision trees with a single-digit number of decision nodes on 5 of the case studies.","PeriodicalId":162317,"journal":{"name":"Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3365365.3382220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Decision tree learning is a popular classification technique most commonly used in machine learning applications. Recent work has shown that decision trees can be used to represent provably-correct controllers concisely. Compared to representations using lookup tables or binary decision diagrams, decision trees are smaller and more explainable. We present dtControl, an easily extensible tool for representing memoryless controllers as decision trees. We give a comprehensive evaluation of various decision tree learning algorithms applied to 10 case studies arising out of correct-by-construction controller synthesis. These algorithms include two new techniques, one for using arbitrary linear binary classifiers in the decision tree learning, and one novel approach for determinizing controllers during the decision tree construction. In particular the latter turns out to be extremely efficient, yielding decision trees with a single-digit number of decision nodes on 5 of the case studies.
dtControl:控制器表示的决策树学习算法
决策树学习是一种流行的分类技术,最常用于机器学习应用。最近的研究表明,决策树可以用来简洁地表示可证明正确的控制器。与使用查找表或二元决策图的表示相比,决策树更小,更易于解释。我们提出了dtControl,一个易于扩展的工具,用于将无内存控制器表示为决策树。我们给出了各种决策树学习算法的综合评价,应用于10个案例研究中,这些案例研究是由结构正确控制器合成引起的。这些算法包括两种新技术,一种是在决策树学习中使用任意线性二元分类器,另一种是在决策树构建过程中确定控制器的新方法。特别是后者被证明是非常有效的,在5个案例研究中产生具有一位数决策节点的决策树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信