Analysis of upper atmospheric effects on material per onboard atomic oxygen monitor system of SLATS

Y. Kimoto, Yuta Tsuchiya, E. Miyazaki, Aki Goto, K. Yukumatsu, S. Imamura
{"title":"Analysis of upper atmospheric effects on material per onboard atomic oxygen monitor system of SLATS","authors":"Y. Kimoto, Yuta Tsuchiya, E. Miyazaki, Aki Goto, K. Yukumatsu, S. Imamura","doi":"10.3389/frspt.2022.891753","DOIUrl":null,"url":null,"abstract":"JAXA has proposed an innovative idea for satellites in Low Earth Orbit (LEO). The Super-Low Altitude Test Satellite (SLATS), also known as TSUBAME, is the first Earth observation satellite to occupy a Super-Low Orbit (S-LEO) or Very Low Earth Orbit (VLEO), below 300 km. The purposes of SLATS are 1) testing the maintenance of the satellite’s altitude with its ion engine against high atmospheric drag at a super-low altitude, 2) acquiring data on atmospheric density and atomic oxygen (AO), and 3) testing optical Earth observation. SLATS was successfully launched on 23 December 2017. SLATS was then altitude-controlled for 636 days to 271.7 km using chemical thrusters, aerodynamic drag, and ion engine propulsion. SLATS finally maintained its orbit of 167.4 km for 7 days and finished its operation on 1 October 2019. All the SLATS and Atomic oxygen MOnitor (AMO) data was acquired during these operations. The AMO is one of the mission sensors that monitor AO and its effects on spacecraft materials. The data from the AMO contributes to the choice of materials in future S-LEO satellite design. The data obtained by the AMO are valuable in that they provide considerable knowledge on AO fluence and its effects on space materials. A precise atmospheric density model and atmospheric composition model are indispensable for predicting the trajectory or re-entry of debris in orbit. Atmospheric models such as NRLMSISE-00, JB 2008, and DTM2013 have been developed, but few studies compare these models and the actual atmospheric environment in LEO. The average atmospheric density obtained from SLATS is lower than the value predicted by the atmospheric models (NRLMSISE-00, JB 2008, and DTM 2013). Understanding the model’s accuracy will contribute to the orbit control of future S-LEO satellites and the orbit prediction and control of debris in LEO.","PeriodicalId":137674,"journal":{"name":"Frontiers in Space Technologies","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Space Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frspt.2022.891753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

JAXA has proposed an innovative idea for satellites in Low Earth Orbit (LEO). The Super-Low Altitude Test Satellite (SLATS), also known as TSUBAME, is the first Earth observation satellite to occupy a Super-Low Orbit (S-LEO) or Very Low Earth Orbit (VLEO), below 300 km. The purposes of SLATS are 1) testing the maintenance of the satellite’s altitude with its ion engine against high atmospheric drag at a super-low altitude, 2) acquiring data on atmospheric density and atomic oxygen (AO), and 3) testing optical Earth observation. SLATS was successfully launched on 23 December 2017. SLATS was then altitude-controlled for 636 days to 271.7 km using chemical thrusters, aerodynamic drag, and ion engine propulsion. SLATS finally maintained its orbit of 167.4 km for 7 days and finished its operation on 1 October 2019. All the SLATS and Atomic oxygen MOnitor (AMO) data was acquired during these operations. The AMO is one of the mission sensors that monitor AO and its effects on spacecraft materials. The data from the AMO contributes to the choice of materials in future S-LEO satellite design. The data obtained by the AMO are valuable in that they provide considerable knowledge on AO fluence and its effects on space materials. A precise atmospheric density model and atmospheric composition model are indispensable for predicting the trajectory or re-entry of debris in orbit. Atmospheric models such as NRLMSISE-00, JB 2008, and DTM2013 have been developed, but few studies compare these models and the actual atmospheric environment in LEO. The average atmospheric density obtained from SLATS is lower than the value predicted by the atmospheric models (NRLMSISE-00, JB 2008, and DTM 2013). Understanding the model’s accuracy will contribute to the orbit control of future S-LEO satellites and the orbit prediction and control of debris in LEO.
高空大气对SLATS星载原子氧监测系统材料的影响分析
JAXA为低地球轨道(LEO)卫星提出了一个创新的想法。超低空测试卫星(SLATS),也被称为TSUBAME,是第一颗占据300公里以下的超低轨道(S-LEO)或极低地球轨道(VLEO)的地球观测卫星。SLATS的目的是1)测试在超低空使用离子发动机在高大气阻力下保持卫星高度的能力,2)获取大气密度和原子氧(AO)数据,3)测试光学对地观测。SLATS于2017年12月23日成功发射。然后使用化学推进器、空气动力阻力和离子发动机推进,对SLATS进行了636天的高度控制,达到271.7公里。SLATS最终在167.4公里的轨道上运行了7天,并于2019年10月1日结束运行。所有的SLATS和原子氧监测仪(AMO)数据都是在这些操作中获得的。AMO是监测AO及其对航天器材料影响的任务传感器之一。来自AMO的数据有助于未来S-LEO卫星设计中材料的选择。AMO获得的数据很有价值,因为它们提供了大量关于AO影响及其对空间材料影响的知识。精确的大气密度模型和大气成分模型是预测轨道碎片轨迹或再入的必要条件。NRLMSISE-00、JB 2008和DTM2013等大气模式已经开发出来,但很少有研究将这些模式与低地球轨道实际大气环境进行比较。由SLATS获得的平均大气密度低于大气模式(NRLMSISE-00、JB 2008和DTM 2013)的预测值。了解模型的精度将有助于未来S-LEO卫星的轨道控制和LEO碎片的轨道预测与控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信