Wendel Serra, Warley Junior, Isaac Barros, H. Kuribayashi, J. V. C. Carmona
{"title":"Monitoring and Smart Decision Architecture for DRONE-FOG Integrated Environment","authors":"Wendel Serra, Warley Junior, Isaac Barros, H. Kuribayashi, J. V. C. Carmona","doi":"10.5753/SBCUP.2021.16008","DOIUrl":null,"url":null,"abstract":"Due to the limited computing resources of drones, it is difficult to handle computation-intensive tasks locally, hence, fog-based computation offloading has been widely adopted. The effectiveness of an offloading operation, however, is determined by its ability to infer where the execution of code/data represents less computational effort for the drone, so that, by deciding where to offload correctly, the device benefits. Thus, this paper proposes MonDroneFog, a novel fog-based architecture that supports image offloading, as well as monitoring and storing the performance metrics related to the drone, wireless network, and cloudlet. It takes advantage of the main machine-learning algorithms to provide offloading decisions with high levels of accuracy, F1, and G-mean. We evaluate the main classification algorithms under our database and the results show that Multi-Layer Perceptron (MLP) and Logistic Regression classifiers achieve 99.64% and 99.20% accuracy, respectively. Under these conditions, MonDrone-Fog works well in dense forests when weather conditions are favorable and can be useful as a support system for SAR missions by providing a shorter runtime for image operations.","PeriodicalId":284980,"journal":{"name":"Anais do XIII Simpósio Brasileiro de Computação Ubíqua e Pervasiva (SBCUP 2021)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIII Simpósio Brasileiro de Computação Ubíqua e Pervasiva (SBCUP 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/SBCUP.2021.16008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Due to the limited computing resources of drones, it is difficult to handle computation-intensive tasks locally, hence, fog-based computation offloading has been widely adopted. The effectiveness of an offloading operation, however, is determined by its ability to infer where the execution of code/data represents less computational effort for the drone, so that, by deciding where to offload correctly, the device benefits. Thus, this paper proposes MonDroneFog, a novel fog-based architecture that supports image offloading, as well as monitoring and storing the performance metrics related to the drone, wireless network, and cloudlet. It takes advantage of the main machine-learning algorithms to provide offloading decisions with high levels of accuracy, F1, and G-mean. We evaluate the main classification algorithms under our database and the results show that Multi-Layer Perceptron (MLP) and Logistic Regression classifiers achieve 99.64% and 99.20% accuracy, respectively. Under these conditions, MonDrone-Fog works well in dense forests when weather conditions are favorable and can be useful as a support system for SAR missions by providing a shorter runtime for image operations.