{"title":"Adaptive memory architecture for real-time image warping","authors":"Andy Motten, L. Claesen, Yun Pan","doi":"10.1109/ICCD.2012.6378680","DOIUrl":null,"url":null,"abstract":"This paper presents a real time image warping module implemented in hardware. A look-up table (LUT) based reverse mapping is used to relate the source image to the warped image. Frame buffers or line buffers are often used to temporally store the source image. However these methods do not take the underlying pattern of the reverse mapping coordinates into account. The presented architecture uses an adaptable memory allocation which can change the depth and the position of the line buffer between lines. A real-time stereo rectification use case has been implemented to validate the operation of this module. Depending on the scenario, the memory consumption can be reduced by a factor of two and more. A real-time image warping module for video cameras has been implemented in a single FPGA, without the use of off-chip memories.","PeriodicalId":313428,"journal":{"name":"2012 IEEE 30th International Conference on Computer Design (ICCD)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 30th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2012.6378680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
This paper presents a real time image warping module implemented in hardware. A look-up table (LUT) based reverse mapping is used to relate the source image to the warped image. Frame buffers or line buffers are often used to temporally store the source image. However these methods do not take the underlying pattern of the reverse mapping coordinates into account. The presented architecture uses an adaptable memory allocation which can change the depth and the position of the line buffer between lines. A real-time stereo rectification use case has been implemented to validate the operation of this module. Depending on the scenario, the memory consumption can be reduced by a factor of two and more. A real-time image warping module for video cameras has been implemented in a single FPGA, without the use of off-chip memories.