Quantum trees which maximize higher eigenvalues are unbalanced

Jonathan Rohleder
{"title":"Quantum trees which maximize higher eigenvalues are unbalanced","authors":"Jonathan Rohleder","doi":"10.1090/bproc/60","DOIUrl":null,"url":null,"abstract":"The isoperimetric problem of maximizing all eigenvalues of the Laplacian on a metric tree graph within the class of trees of a given average edge length is studied. It turns out that, up to rescaling, the unique maximizer of the \n\n \n k\n k\n \n\n-th positive eigenvalue is the star graph with three edges of lengths \n\n \n \n 2\n k\n −\n 1\n \n 2 k - 1\n \n\n, \n\n \n 1\n 1\n \n\n and \n\n \n 1\n 1\n \n\n. This complements the previously known result that the first nonzero eigenvalue is maximized by all equilateral star graphs and indicates that optimizers of isoperimetric problems for higher eigenvalues may be less balanced in their shape—an observation which is known from numerical results on the optimization of higher eigenvalues of Laplacians on Euclidean domains.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The isoperimetric problem of maximizing all eigenvalues of the Laplacian on a metric tree graph within the class of trees of a given average edge length is studied. It turns out that, up to rescaling, the unique maximizer of the k k -th positive eigenvalue is the star graph with three edges of lengths 2 k − 1 2 k - 1 , 1 1 and 1 1 . This complements the previously known result that the first nonzero eigenvalue is maximized by all equilateral star graphs and indicates that optimizers of isoperimetric problems for higher eigenvalues may be less balanced in their shape—an observation which is known from numerical results on the optimization of higher eigenvalues of Laplacians on Euclidean domains.
使高特征值最大化的量子树是不平衡的
研究了在给定平均边长的树类中,度量树图上拉普拉斯算子的所有特征值最大化的等周问题。结果证明,在重新缩放之前,k k个正特征值的唯一最大化器是具有3条边长度为2 k−1 2 k - 1 1 1和1 1的星图。这补充了先前已知的结果,即第一个非零特征值被所有等边星图最大化,并表明等边问题的高特征值优化器在其形状上可能不太平衡-这一观察从欧几里得域上拉普拉斯算子的高特征值优化的数值结果中已知。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信