Preliminary application of machine-learning techniques for thermal-electrical parameter optimization in 3-D IC

Sung Joo Park, Huan Yu, M. Swaminathan
{"title":"Preliminary application of machine-learning techniques for thermal-electrical parameter optimization in 3-D IC","authors":"Sung Joo Park, Huan Yu, M. Swaminathan","doi":"10.1109/ISEMC.2016.7571681","DOIUrl":null,"url":null,"abstract":"Three-dimensional (3-D) integration technique, a promising integration technique, can increase system density but at the cost of increased thermal and power density, leading to thermal-related problems. Design of three-dimensional integrated circuits and systems requires considerations of temperature and gradients observed across the die, because temperature gradients can vary the delay of clock paths. As we need to analyze a large number of parameters for thermal-electrical design, optimization of those parameters becomes important for achieving efficiency and accuracy. Machine learning methods have been applied in the past for artificial intelligence, data analysis, and for general optimization problems. In this paper we propose the application of machine learning methods for parameter optimization in 3-D systems.","PeriodicalId":326016,"journal":{"name":"2016 IEEE International Symposium on Electromagnetic Compatibility (EMC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Electromagnetic Compatibility (EMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEMC.2016.7571681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Three-dimensional (3-D) integration technique, a promising integration technique, can increase system density but at the cost of increased thermal and power density, leading to thermal-related problems. Design of three-dimensional integrated circuits and systems requires considerations of temperature and gradients observed across the die, because temperature gradients can vary the delay of clock paths. As we need to analyze a large number of parameters for thermal-electrical design, optimization of those parameters becomes important for achieving efficiency and accuracy. Machine learning methods have been applied in the past for artificial intelligence, data analysis, and for general optimization problems. In this paper we propose the application of machine learning methods for parameter optimization in 3-D systems.
机器学习技术在三维集成电路热电参数优化中的初步应用
三维集成技术是一种很有前途的集成技术,它可以提高系统密度,但代价是热量和功率密度的增加,从而导致热相关问题。三维集成电路和系统的设计需要考虑在整个芯片上观察到的温度和梯度,因为温度梯度会改变时钟路径的延迟。由于热电设计需要分析大量的参数,因此对这些参数的优化对于实现效率和精度至关重要。机器学习方法在过去已经应用于人工智能、数据分析和一般优化问题。本文提出了机器学习方法在三维系统参数优化中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信