{"title":"An Ultra-Wideband BGA-Via Transition for High-Speed Digital and Millimeter-Wave Packaging Applications","authors":"T. Kangasvieri, J. Halme, J. Vahakangas, M. Lahti","doi":"10.1109/MWSYM.2007.380001","DOIUrl":null,"url":null,"abstract":"This paper presents a high-performance BGA-via transition structure suitable for multilayer system-in-package (SiP) applications over a wide frequency range from DC up to the F-band. The main issues involved in designing and optimizing the entire vertical transition path, starting from a motherboard and ending at the top surface of a BGA module package are outlined. The module substrates were manufactured in a standard, multilayer low-temperature co-fired ceramic (LTCC) process. The ceramic modules with plastic-core solder balls were mounted on a motherboard using standard surface-mount assembly processes. The RF performance of the developed transition structure was validated with on-wafer scattering parameter measurements. The measured results correlated very well with full-wave electromagnetic (EM) simulations, exhibiting return and insertion loss values better than 22 dB and 0.6 dB, respectively, up to 50 GHz. Moreover, the EM simulations demonstrated that the 1-dB cut-off frequency of the complete BGA-via transition structure can be extended from 55 GHz up to nearly 70 GHz at the expense of poorer return loss.","PeriodicalId":213749,"journal":{"name":"2007 IEEE/MTT-S International Microwave Symposium","volume":"2293 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE/MTT-S International Microwave Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2007.380001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
This paper presents a high-performance BGA-via transition structure suitable for multilayer system-in-package (SiP) applications over a wide frequency range from DC up to the F-band. The main issues involved in designing and optimizing the entire vertical transition path, starting from a motherboard and ending at the top surface of a BGA module package are outlined. The module substrates were manufactured in a standard, multilayer low-temperature co-fired ceramic (LTCC) process. The ceramic modules with plastic-core solder balls were mounted on a motherboard using standard surface-mount assembly processes. The RF performance of the developed transition structure was validated with on-wafer scattering parameter measurements. The measured results correlated very well with full-wave electromagnetic (EM) simulations, exhibiting return and insertion loss values better than 22 dB and 0.6 dB, respectively, up to 50 GHz. Moreover, the EM simulations demonstrated that the 1-dB cut-off frequency of the complete BGA-via transition structure can be extended from 55 GHz up to nearly 70 GHz at the expense of poorer return loss.