Failure Analysis of Brass Tubes

S. Lawrence, R. Bodnar
{"title":"Failure Analysis of Brass Tubes","authors":"S. Lawrence, R. Bodnar","doi":"10.31399/asm.fach.power.c9001521","DOIUrl":null,"url":null,"abstract":"\n Admiralty brass (Alloy C44300) cooling tubes which were part of a heat exchanger in a turbogenerator that provided electricity to a manufacturing plant failed. A mixture of non-recirculating city and “spring pit” water flowed through bundles of tubes to cool the oil in which they are immersed. However, a problem developed when several of the brass tubes cracked transversely, allowing cooling water to mix with the oil. The presence of a tensile stress, intergranular cracks, and a corrosion product suggested the tube failures resulted from stress-corrosion cracking. The main corrosion product was cupric hydroxychloride. In addition to switching to a more corrosion-resistant alloy, extreme care should be taken in the manufacturing of the replacement tube bundles to avoid imparting any residual tensile stresses in the tubing. Analyses of city and spring-pit water were recommended also, to determine which contained the least-harmful corrosive chemicals.","PeriodicalId":107406,"journal":{"name":"ASM Failure Analysis Case Histories: Power Generating Equipment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1997-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASM Failure Analysis Case Histories: Power Generating Equipment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.fach.power.c9001521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Admiralty brass (Alloy C44300) cooling tubes which were part of a heat exchanger in a turbogenerator that provided electricity to a manufacturing plant failed. A mixture of non-recirculating city and “spring pit” water flowed through bundles of tubes to cool the oil in which they are immersed. However, a problem developed when several of the brass tubes cracked transversely, allowing cooling water to mix with the oil. The presence of a tensile stress, intergranular cracks, and a corrosion product suggested the tube failures resulted from stress-corrosion cracking. The main corrosion product was cupric hydroxychloride. In addition to switching to a more corrosion-resistant alloy, extreme care should be taken in the manufacturing of the replacement tube bundles to avoid imparting any residual tensile stresses in the tubing. Analyses of city and spring-pit water were recommended also, to determine which contained the least-harmful corrosive chemicals.
黄铜管失效分析
海军部黄铜(C44300合金)冷却管失效,该冷却管是为制造厂提供电力的涡轮发电机热交换器的一部分。非再循环的城市水和“泉坑”水的混合物流经成束的管道,以冷却浸入其中的石油。然而,当几根黄铜管横向开裂时,一个问题出现了,这使得冷却水与油混合在一起。拉伸应力、晶间裂纹和腐蚀产物的存在表明管的失效是由应力腐蚀开裂引起的。腐蚀产物主要为羟基氯化铜。除了使用更耐腐蚀的合金外,在制造替代管束时还应格外小心,以避免在油管中留下任何残余的拉伸应力。还建议对城市和泉水进行分析,以确定哪一种含有危害最小的腐蚀性化学物质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信