Development of a single-sided Parylene C based intrafascicular multichannel electrode for peripheral nerves

Matthias Müller, M. Ulloa, M. Schuettler, T. Stieglitz
{"title":"Development of a single-sided Parylene C based intrafascicular multichannel electrode for peripheral nerves","authors":"Matthias Müller, M. Ulloa, M. Schuettler, T. Stieglitz","doi":"10.1109/NER.2015.7146678","DOIUrl":null,"url":null,"abstract":"As cleanroom fabricated polyimide based electrodes are commonly used in clinical trials due to their small dimensions and high flexibility we want to translate these advantages to a maskless manufacturing technology and another substrate material with FDA approval: Parlyene C. Using a picosecond laser (355 nm Nd:YVO4) an established laser fabrication process (1064 nm Nd:YAG nansecond laser) for silicone rubber electrodes was modified to allow the fabrication of thin parylene C electrodes for intrafascicular application. The process utilizes a 25 μm thick platinum iridium foil that is placed between two 10 μm thick parylene C substrate layers. Using the laser for thinning down the metal, increasing the active surface and cutting the complete electrode array a new fabrication process is developed. Adhesion parameters of the involved materials are measured and tailored to fit each other. The single electrode arrays feature 4 intrafascicular contacts as well as a ground electrode and fixation openings outside the nerve. Functionality of the electrode array was measured and a first assessment of its usability has been performed. The mechanical and electrochemical parameters are promising for intrafascicular implantation, successful stimulation and recording application in a peripheral nerve.","PeriodicalId":137451,"journal":{"name":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2015.7146678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

As cleanroom fabricated polyimide based electrodes are commonly used in clinical trials due to their small dimensions and high flexibility we want to translate these advantages to a maskless manufacturing technology and another substrate material with FDA approval: Parlyene C. Using a picosecond laser (355 nm Nd:YVO4) an established laser fabrication process (1064 nm Nd:YAG nansecond laser) for silicone rubber electrodes was modified to allow the fabrication of thin parylene C electrodes for intrafascicular application. The process utilizes a 25 μm thick platinum iridium foil that is placed between two 10 μm thick parylene C substrate layers. Using the laser for thinning down the metal, increasing the active surface and cutting the complete electrode array a new fabrication process is developed. Adhesion parameters of the involved materials are measured and tailored to fit each other. The single electrode arrays feature 4 intrafascicular contacts as well as a ground electrode and fixation openings outside the nerve. Functionality of the electrode array was measured and a first assessment of its usability has been performed. The mechanical and electrochemical parameters are promising for intrafascicular implantation, successful stimulation and recording application in a peripheral nerve.
周围神经单面聚对二甲苯基束内多通道电极的研制
由于洁净室制造的聚酰亚胺基电极尺寸小,灵活性高,因此通常用于临床试验,我们希望将这些优势转化为无面罩制造技术和另一种获得FDA批准的基板材料:利用皮秒激光(355 nm Nd:YVO4)对现有的硅橡胶电极激光制备工艺(1064 nm Nd:YAG纳秒激光)进行了改进,以制备用于束内应用的薄聚对二甲苯C电极。该工艺利用25 μm厚的铂铱箔,将其放置在两个10 μm厚的聚对二甲苯基板层之间。利用激光削薄金属、增加活性表面和切割完整的电极阵列,开发了一种新的制造工艺。所涉及的材料的粘附参数进行测量和定制,以适应彼此。单电极阵列具有4个束内接触点以及一个接地电极和神经外的固定开口。测量了电极阵列的功能,并对其可用性进行了首次评估。其力学和电化学参数在周围神经的束内植入、成功刺激和记录应用方面具有广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信