{"title":"Fault diagnosis for spark ignition engine based on multi-sensor data fusion","authors":"Tan Derong, Y. Xinping, Gaofeng Song, Li Zhenglin","doi":"10.1109/ICVES.2005.1563663","DOIUrl":null,"url":null,"abstract":"In data fusion approaches, Dempster-Shafer (D-S) evidence theory offers an interesting tool to combine data from multi-sensor. The decision-level fusion based on Dempster-Shafer (D-S) evidence theory can process non-commensurate data and has robust operational performance, reduces ambiguity, increases confidence, and improves system reliability. This paper describes mainly a decision-level data fusion technique for fault diagnosis for electronically controlled spark ignition engines. A D-S evidence theory fault diagnosis model is founded, and the feature selection and extraction of fault signal is conducted. Experiments on a 462 mini engine show that the data fusion technique provides good engine fault diagnosis method.","PeriodicalId":443433,"journal":{"name":"IEEE International Conference on Vehicular Electronics and Safety, 2005.","volume":"52 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Vehicular Electronics and Safety, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVES.2005.1563663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
In data fusion approaches, Dempster-Shafer (D-S) evidence theory offers an interesting tool to combine data from multi-sensor. The decision-level fusion based on Dempster-Shafer (D-S) evidence theory can process non-commensurate data and has robust operational performance, reduces ambiguity, increases confidence, and improves system reliability. This paper describes mainly a decision-level data fusion technique for fault diagnosis for electronically controlled spark ignition engines. A D-S evidence theory fault diagnosis model is founded, and the feature selection and extraction of fault signal is conducted. Experiments on a 462 mini engine show that the data fusion technique provides good engine fault diagnosis method.