Fault diagnosis for spark ignition engine based on multi-sensor data fusion

Tan Derong, Y. Xinping, Gaofeng Song, Li Zhenglin
{"title":"Fault diagnosis for spark ignition engine based on multi-sensor data fusion","authors":"Tan Derong, Y. Xinping, Gaofeng Song, Li Zhenglin","doi":"10.1109/ICVES.2005.1563663","DOIUrl":null,"url":null,"abstract":"In data fusion approaches, Dempster-Shafer (D-S) evidence theory offers an interesting tool to combine data from multi-sensor. The decision-level fusion based on Dempster-Shafer (D-S) evidence theory can process non-commensurate data and has robust operational performance, reduces ambiguity, increases confidence, and improves system reliability. This paper describes mainly a decision-level data fusion technique for fault diagnosis for electronically controlled spark ignition engines. A D-S evidence theory fault diagnosis model is founded, and the feature selection and extraction of fault signal is conducted. Experiments on a 462 mini engine show that the data fusion technique provides good engine fault diagnosis method.","PeriodicalId":443433,"journal":{"name":"IEEE International Conference on Vehicular Electronics and Safety, 2005.","volume":"52 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Vehicular Electronics and Safety, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVES.2005.1563663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In data fusion approaches, Dempster-Shafer (D-S) evidence theory offers an interesting tool to combine data from multi-sensor. The decision-level fusion based on Dempster-Shafer (D-S) evidence theory can process non-commensurate data and has robust operational performance, reduces ambiguity, increases confidence, and improves system reliability. This paper describes mainly a decision-level data fusion technique for fault diagnosis for electronically controlled spark ignition engines. A D-S evidence theory fault diagnosis model is founded, and the feature selection and extraction of fault signal is conducted. Experiments on a 462 mini engine show that the data fusion technique provides good engine fault diagnosis method.
基于多传感器数据融合的火花点火发动机故障诊断
在数据融合方法中,Dempster-Shafer (D-S)证据理论为多传感器数据的融合提供了一个有趣的工具。基于Dempster-Shafer (D-S)证据理论的决策级融合能够处理非相称数据,具有稳健的操作性能,减少歧义,增加置信度,提高系统可靠性。本文主要介绍了一种用于电控火花点火发动机故障诊断的决策级数据融合技术。建立D-S证据理论故障诊断模型,对故障信号进行特征选择和提取。在一台462小型发动机上的实验表明,数据融合技术为发动机故障诊断提供了良好的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信