Vehicle detection using discriminatively trained part templates with variable size

Hossein Tehrani Niknejad, Taiki Kawano, Mikio Shimizu, S. Mita
{"title":"Vehicle detection using discriminatively trained part templates with variable size","authors":"Hossein Tehrani Niknejad, Taiki Kawano, Mikio Shimizu, S. Mita","doi":"10.1109/IVS.2012.6232284","DOIUrl":null,"url":null,"abstract":"Introduction of new local and semi-local features has played an important role in advancing the performance of object recognitions. Deformable part models prepare elegant framework for representing object categories and both efficient and accurate, achieving state-of the-art results. In this paper, We consider the problem of training a part-based model with variable size from images labeled only with bounding boxes around the objects. We consider part size as a latent variable and try to optimize simultaneously size and place of part templates to cover high-energy regions of the object. Extensive experiments in urban scenarios for vehicle detection show that the average precision of deformable part model significantly is improved from 72.10% to 82.41% without losing the average recall.","PeriodicalId":402389,"journal":{"name":"2012 IEEE Intelligent Vehicles Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2012.6232284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Introduction of new local and semi-local features has played an important role in advancing the performance of object recognitions. Deformable part models prepare elegant framework for representing object categories and both efficient and accurate, achieving state-of the-art results. In this paper, We consider the problem of training a part-based model with variable size from images labeled only with bounding boxes around the objects. We consider part size as a latent variable and try to optimize simultaneously size and place of part templates to cover high-energy regions of the object. Extensive experiments in urban scenarios for vehicle detection show that the average precision of deformable part model significantly is improved from 72.10% to 82.41% without losing the average recall.
采用区别训练的可变尺寸零件模板进行车辆检测
新的局部和半局部特征的引入对提高目标识别的性能起着重要的作用。可变形零件模型为表示对象类别准备了优雅的框架,既高效又准确,实现了最先进的结果。在本文中,我们考虑的问题是训练一个基于零件的变尺寸模型,该模型是由仅在物体周围标记有边界框的图像来训练的。我们考虑零件尺寸作为一个潜在变量,并试图同时优化零件模板的尺寸和位置,以覆盖物体的高能区域。在城市场景中进行的大量车辆检测实验表明,在不损失平均召回率的情况下,可变形零件模型的平均精度从72.10%显著提高到82.41%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信