Solving Dynamic Multi-Objective Optimization Problems Using Cultural Algorithm based on Decomposition

Ramya Ravichandran, Ziad Kobti
{"title":"Solving Dynamic Multi-Objective Optimization Problems Using Cultural Algorithm based on Decomposition","authors":"Ramya Ravichandran, Ziad Kobti","doi":"10.1145/3387168.3387205","DOIUrl":null,"url":null,"abstract":"The importance of dynamic multi-objective optimization problems (DMOPs) is on the rise, in complex systems. DMOPs have several objective functions and constraints that vary over time to be considered simultaneously. As a result, the Pareto optimal solutions (POS) and Pareto front (PF) will also vary with time. The desired algorithm should not only locate the optima but also track the moving optima efficiently. In this paper, we propose a new Cultural Algorithm (CA) based on decomposition (CA/D). The primary objective of the CA/D algorithm is to decompose DMOP into several scalar optimization subproblems and solve simultaneously. The subproblems are optimized utilizing the information shared only by its neighboring problems. The proposed CA/D is evaluated using CEC 2015 optimization benchmark functions. The results show that CA/D outperforms CA, Multi-population CA (MPCA), and MPCA incorporating game strategies (MPCA-GS), particularly in hybrid and composite benchmark problems.","PeriodicalId":346739,"journal":{"name":"Proceedings of the 3rd International Conference on Vision, Image and Signal Processing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Vision, Image and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3387168.3387205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The importance of dynamic multi-objective optimization problems (DMOPs) is on the rise, in complex systems. DMOPs have several objective functions and constraints that vary over time to be considered simultaneously. As a result, the Pareto optimal solutions (POS) and Pareto front (PF) will also vary with time. The desired algorithm should not only locate the optima but also track the moving optima efficiently. In this paper, we propose a new Cultural Algorithm (CA) based on decomposition (CA/D). The primary objective of the CA/D algorithm is to decompose DMOP into several scalar optimization subproblems and solve simultaneously. The subproblems are optimized utilizing the information shared only by its neighboring problems. The proposed CA/D is evaluated using CEC 2015 optimization benchmark functions. The results show that CA/D outperforms CA, Multi-population CA (MPCA), and MPCA incorporating game strategies (MPCA-GS), particularly in hybrid and composite benchmark problems.
基于分解的文化算法求解动态多目标优化问题
动态多目标优化问题(dops)在复杂系统中的重要性日益凸显。dops有几个目标函数和约束,随着时间的推移而变化,需要同时考虑。因此,帕累托最优解(POS)和帕累托前沿(PF)也会随时间变化。期望的算法不仅要定位最优点,而且要有效地跟踪运动的最优点。本文提出了一种新的基于分解的文化算法(CA/D)。CA/D算法的主要目标是将DMOP分解为多个标量优化子问题并同时求解。子问题仅利用相邻问题共享的信息进行优化。使用CEC 2015优化基准函数对所提出的CA/D进行了评估。结果表明,CA/D算法在混合和复合基准问题上优于CA、多种群CA (MPCA)和结合博弈策略的MPCA (MPCA- gs)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信