Model Predictive Control of a Highly Nonlinear Process Based on Piecewise Linear Wiener Models

Ghobad Shafiee, MohammadMehdi Arefi, MohammadReza Jahed-Motlagh, AliAkbar Jalali
{"title":"Model Predictive Control of a Highly Nonlinear Process Based on Piecewise Linear Wiener Models","authors":"Ghobad Shafiee, MohammadMehdi Arefi, MohammadReza Jahed-Motlagh, AliAkbar Jalali","doi":"10.1109/ICELIE.2006.347195","DOIUrl":null,"url":null,"abstract":"In this paper a nonlinear model predictive control (NMPC) based on a piecewise linear Wiener model is presented. The nonlinear gain of this particular Wiener model is approximated using the piecewise linear functions. This approach retains all the interested properties of the classical linear model predictive control (MPC) and keeps computations easy to solve due to the canonical structure of the nonlinear gain. The presented control scheme is applied to a pH neutralization process and simulation results are compared to linear model predictive control. Simulation results show that the nonlinear controller has better performance without any overshoot in comparison with linear MPC and also less steady-state error in tracking the set-points","PeriodicalId":345289,"journal":{"name":"2006 1ST IEEE International Conference on E-Learning in Industrial Electronics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 1ST IEEE International Conference on E-Learning in Industrial Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICELIE.2006.347195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper a nonlinear model predictive control (NMPC) based on a piecewise linear Wiener model is presented. The nonlinear gain of this particular Wiener model is approximated using the piecewise linear functions. This approach retains all the interested properties of the classical linear model predictive control (MPC) and keeps computations easy to solve due to the canonical structure of the nonlinear gain. The presented control scheme is applied to a pH neutralization process and simulation results are compared to linear model predictive control. Simulation results show that the nonlinear controller has better performance without any overshoot in comparison with linear MPC and also less steady-state error in tracking the set-points
基于片线性维纳模型的高度非线性过程模型预测控制
本文介绍了一种基于片线性维纳模型的非线性模型预测控制(NMPC)。该特定维纳模型的非线性增益使用片断线性函数近似。这种方法保留了经典线性模型预测控制(MPC)的所有相关特性,并且由于非线性增益的典型结构,使计算更容易求解。将所提出的控制方案应用于 pH 中和过程,并将仿真结果与线性模型预测控制进行比较。仿真结果表明,与线性 MPC 相比,非线性控制器的性能更好,没有任何超调,而且在跟踪设定点时的稳态误差更小
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信