Applying Eco-Threading Framework to Memory-Intensive Hadoop Applications

Hiroaki Takasaki, S. Mostafa, S. Kusakabe
{"title":"Applying Eco-Threading Framework to Memory-Intensive Hadoop Applications","authors":"Hiroaki Takasaki, S. Mostafa, S. Kusakabe","doi":"10.1109/ICISA.2014.6847366","DOIUrl":null,"url":null,"abstract":"Hadoop is a software framework for processing large data sets on clusters of commodity hardware. We apply our framework, which enhances performance and efficiency of memory-intensive multi-threaded applications, to Hadoop applications. The framework consists of a kernel-level thread scheduler, an application programming interface (API) for the scheduler, and a controller for the behavior of the scheduler through the API. We exploit the affinity of sibling threads, which have the same parent process and share the context, so that we can effectively exploit memory hierarchy by reducing memory-related undesirable events such as cache misses. We monitors performance metrics and automatically adjusts the behavior of the scheduler through the API to try to maximize the effectiveness of the scheduler. According to our preliminary evaluation result, our framework is promising to reduce the energy consumption of memory intensive Hadoop applications.","PeriodicalId":117185,"journal":{"name":"2014 International Conference on Information Science & Applications (ICISA)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Information Science & Applications (ICISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISA.2014.6847366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Hadoop is a software framework for processing large data sets on clusters of commodity hardware. We apply our framework, which enhances performance and efficiency of memory-intensive multi-threaded applications, to Hadoop applications. The framework consists of a kernel-level thread scheduler, an application programming interface (API) for the scheduler, and a controller for the behavior of the scheduler through the API. We exploit the affinity of sibling threads, which have the same parent process and share the context, so that we can effectively exploit memory hierarchy by reducing memory-related undesirable events such as cache misses. We monitors performance metrics and automatically adjusts the behavior of the scheduler through the API to try to maximize the effectiveness of the scheduler. According to our preliminary evaluation result, our framework is promising to reduce the energy consumption of memory intensive Hadoop applications.
Hadoop是一个软件框架,用于在商用硬件集群上处理大型数据集。我们将我们的框架应用于Hadoop应用程序,该框架增强了内存密集型多线程应用程序的性能和效率。该框架由内核级线程调度器、调度器的应用程序编程接口(API)和调度器通过API的行为的控制器组成。我们利用具有相同父进程并共享上下文的兄弟线程的亲缘性,因此我们可以通过减少与内存相关的不良事件(如缓存丢失)来有效地利用内存层次结构。我们监视性能指标,并通过API自动调整调度器的行为,以尝试最大化调度器的有效性。根据我们的初步评估结果,我们的框架有望降低内存密集型Hadoop应用程序的能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信