{"title":"Hardware Accelerated FrodoKEM on RISC-V","authors":"Patrick Karl, Tim Fritzmann, G. Sigl","doi":"10.1109/ddecs54261.2022.9770148","DOIUrl":null,"url":null,"abstract":"FrodoKEM is an alternative finalist in the currently running standardization process for post-quantum secure cryptography, initiated by the National Institute of Standards and Technology (NIST). It is based on the well studied plain Learning With Errors (LWE) problem, leading to a high confidence in security. Its conservative design approach, however, makes it less performant when compared to other lattice-based candidates. In this work, we assemble a RISC-V based HW/SW codesign of FrodoKEM to speed up its computation. Our design supports all three parameter sets of the NIST submission. Compared to plain SW implementations on RISC-V, our accelerated design achieves speedup factors of up to 8.13.","PeriodicalId":334461,"journal":{"name":"2022 25th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 25th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ddecs54261.2022.9770148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
FrodoKEM is an alternative finalist in the currently running standardization process for post-quantum secure cryptography, initiated by the National Institute of Standards and Technology (NIST). It is based on the well studied plain Learning With Errors (LWE) problem, leading to a high confidence in security. Its conservative design approach, however, makes it less performant when compared to other lattice-based candidates. In this work, we assemble a RISC-V based HW/SW codesign of FrodoKEM to speed up its computation. Our design supports all three parameter sets of the NIST submission. Compared to plain SW implementations on RISC-V, our accelerated design achieves speedup factors of up to 8.13.