How to compare search engines in CBIR?

T. Jaworska
{"title":"How to compare search engines in CBIR?","authors":"T. Jaworska","doi":"10.1109/SAI.2016.7555995","DOIUrl":null,"url":null,"abstract":"At present a great deal of research is being done in different aspects of Content-Based Image Retrieval (CBIR) of which the search engine is one of the most important elements. In this paper we cover the state-of-the-art techniques in CBIR according to the aims of retrieval and matching techniques. The issue we address is the analysis of search engines reducing the `semantic gap'. The matching methods are compared in terms of their usefulness for different user's aims. Finally, we compare our search engine with Google's and the SIFT method.","PeriodicalId":219896,"journal":{"name":"2016 SAI Computing Conference (SAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 SAI Computing Conference (SAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAI.2016.7555995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

At present a great deal of research is being done in different aspects of Content-Based Image Retrieval (CBIR) of which the search engine is one of the most important elements. In this paper we cover the state-of-the-art techniques in CBIR according to the aims of retrieval and matching techniques. The issue we address is the analysis of search engines reducing the `semantic gap'. The matching methods are compared in terms of their usefulness for different user's aims. Finally, we compare our search engine with Google's and the SIFT method.
如何在CBIR中比较搜索引擎?
目前,人们对基于内容的图像检索(CBIR)的各个方面进行了大量的研究,而搜索引擎是其中最重要的组成部分之一。本文根据检索和匹配技术的目的,介绍了目前CBIR中最先进的技术。我们要解决的问题是分析搜索引擎,减少“语义差距”。比较了这些匹配方法对不同用户目标的适用性。最后,我们将我们的搜索引擎与Google和SIFT方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信