Recursive estimation of vehicle position by using navigation sensor fusion

Shun-Hung Chen, C. Hsu, S. Huang
{"title":"Recursive estimation of vehicle position by using navigation sensor fusion","authors":"Shun-Hung Chen, C. Hsu, S. Huang","doi":"10.1109/ITST.2012.6425236","DOIUrl":null,"url":null,"abstract":"In this paper, a sensor fusion scheme is employed to reduce positioning error of a vehicle since the GPS signal is fail. The vehicular information, such as position, heading direction, and velocity, can be obtained through GPS signal. Generally, the positioning accuracy of commercial GPS module is within the 3 meters, however, the GPS module may disconnect the signals from satellites since the vehicle is maneuvered under shelters, e.g. parking garage, tunnel, high dense urban, etc. Therefore, our proposed methodology is able to improve the estimation accuracy of vehicle position based on dead reckoning method. The first step, the Kalman filter is utilized to reject the noise of velocity measurement which is captured from gearbox and wheel speed sensor and also predict the velocity and displacement of vehicle in next sample time. The second step is to construct the displacement model of the vehicle by adopting ARMA model, which is able to estimate the state of vehicle. Digital map information which is applied to correct the positioning result of ARMA model is addressed in the last step. A real time experiment result of GPS signal lost in a tunnel is carried out to demonstrate the performance of our proposed method.","PeriodicalId":143706,"journal":{"name":"2012 12th International Conference on ITS Telecommunications","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th International Conference on ITS Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITST.2012.6425236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, a sensor fusion scheme is employed to reduce positioning error of a vehicle since the GPS signal is fail. The vehicular information, such as position, heading direction, and velocity, can be obtained through GPS signal. Generally, the positioning accuracy of commercial GPS module is within the 3 meters, however, the GPS module may disconnect the signals from satellites since the vehicle is maneuvered under shelters, e.g. parking garage, tunnel, high dense urban, etc. Therefore, our proposed methodology is able to improve the estimation accuracy of vehicle position based on dead reckoning method. The first step, the Kalman filter is utilized to reject the noise of velocity measurement which is captured from gearbox and wheel speed sensor and also predict the velocity and displacement of vehicle in next sample time. The second step is to construct the displacement model of the vehicle by adopting ARMA model, which is able to estimate the state of vehicle. Digital map information which is applied to correct the positioning result of ARMA model is addressed in the last step. A real time experiment result of GPS signal lost in a tunnel is carried out to demonstrate the performance of our proposed method.
基于导航传感器融合的车辆位置递归估计
本文采用一种传感器融合方案来减小GPS信号失效时车辆的定位误差。通过GPS信号可以获取车辆的位置、行驶方向、速度等信息。商用GPS模块的定位精度一般在3米以内,但由于车辆在掩体下行驶,如停车场、隧道、高密度城市等,GPS模块可能会断开与卫星的信号。因此,本文提出的方法能够提高基于航位推算法的车辆位置估计精度。第一步,利用卡尔曼滤波对从变速箱和轮速传感器采集的测速噪声进行抑制,并预测下一采样时间内车辆的速度和位移。第二步,采用ARMA模型构建车辆位移模型,实现对车辆状态的估计。最后一步解决了利用数字地图信息对ARMA模型定位结果进行校正的问题。以隧道中GPS信号丢失的实时实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信