A full smooth semi-support vector machine based on the cubic spline function

Jinggai Ma, Xiao-dan Zhang
{"title":"A full smooth semi-support vector machine based on the cubic spline function","authors":"Jinggai Ma, Xiao-dan Zhang","doi":"10.1109/BMEI.2013.6747020","DOIUrl":null,"url":null,"abstract":"The non-smooth problem for the semi-supervised support vector machine optimization model is studied. Since the objective function of the unstrained semi-supervised vector machine model is a non-smooth function. Most fast optimization algorithms can not be applied to solve the semi-supervised vector machine model. We propose a full smooth cubic spline function to approximate the symmetric hinge loss function. The Broyden-Fletcher-Goldfarb-Shanno(BFGS) algorithm is used to solve the new model. The experimental results show that the new model has a better classification performance.","PeriodicalId":163211,"journal":{"name":"2013 6th International Conference on Biomedical Engineering and Informatics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 6th International Conference on Biomedical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEI.2013.6747020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The non-smooth problem for the semi-supervised support vector machine optimization model is studied. Since the objective function of the unstrained semi-supervised vector machine model is a non-smooth function. Most fast optimization algorithms can not be applied to solve the semi-supervised vector machine model. We propose a full smooth cubic spline function to approximate the symmetric hinge loss function. The Broyden-Fletcher-Goldfarb-Shanno(BFGS) algorithm is used to solve the new model. The experimental results show that the new model has a better classification performance.
基于三次样条函数的全光滑半支持向量机
研究了半监督支持向量机优化模型的非光滑问题。由于无应变半监督向量机模型的目标函数是一个非光滑函数。大多数快速优化算法不能用于求解半监督向量机模型。我们提出了一个全光滑三次样条函数来近似对称铰链损失函数。采用BFGS (Broyden-Fletcher-Goldfarb-Shanno)算法求解新模型。实验结果表明,新模型具有较好的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信