Fine-grained parallel application specific computing for RNA secondary structure prediction on FPGA

Qianghua Zhu, Fei Xia, Guoqing Jin
{"title":"Fine-grained parallel application specific computing for RNA secondary structure prediction on FPGA","authors":"Qianghua Zhu, Fei Xia, Guoqing Jin","doi":"10.1142/S0218126614500315","DOIUrl":null,"url":null,"abstract":"In the field of RNA secondary structure prediction, the Zuker algorithm is one of the most popular methods using free energy minimization. However, general-purpose computers including parallel computers or multi-core computers exhibit parallel efficiency of no more than 50% on Zuker. FPGA chips provide a new approach to accelerate the Zuker algorithm by exploiting fine-grained custom design. Zuker shows complicated data dependences, in which the dependence distance is variable, and the dependence direction is also across two dimensions. We propose a systolic array structure including one master PE and multiple slave PEs for fine grain hardware implementation on FPGA. We exploit data reuse schemes to reduce the need to load energy matrices from external memory. We also propose several methods to reduce energy table parameter size by 85%. To our knowledge, our implementation with 16 PEs is the only FPGA accelerator implementing the complete Zuker algorithm. The experimental results show a factor of 14 speedup over the ViennaRNA-1.6.5 software for 2981-residue RNA sequence running on a PC platform with Pentium 4 2.6 GHz CPU.","PeriodicalId":345501,"journal":{"name":"2008 IEEE International Conference on Computer Design","volume":"179 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218126614500315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In the field of RNA secondary structure prediction, the Zuker algorithm is one of the most popular methods using free energy minimization. However, general-purpose computers including parallel computers or multi-core computers exhibit parallel efficiency of no more than 50% on Zuker. FPGA chips provide a new approach to accelerate the Zuker algorithm by exploiting fine-grained custom design. Zuker shows complicated data dependences, in which the dependence distance is variable, and the dependence direction is also across two dimensions. We propose a systolic array structure including one master PE and multiple slave PEs for fine grain hardware implementation on FPGA. We exploit data reuse schemes to reduce the need to load energy matrices from external memory. We also propose several methods to reduce energy table parameter size by 85%. To our knowledge, our implementation with 16 PEs is the only FPGA accelerator implementing the complete Zuker algorithm. The experimental results show a factor of 14 speedup over the ViennaRNA-1.6.5 software for 2981-residue RNA sequence running on a PC platform with Pentium 4 2.6 GHz CPU.
基于FPGA的RNA二级结构预测的细粒度并行专用计算
在RNA二级结构预测领域,Zuker算法是利用自由能最小化的最常用方法之一。然而,包括并行计算机或多核计算机在内的通用计算机在Zuker上的并行效率不超过50%。FPGA芯片通过利用细粒度定制设计提供了一种加速Zuker算法的新方法。Zuker展示了复杂的数据依赖关系,其中依赖距离是可变的,并且依赖方向也是跨两个维度的。我们提出了一个包含一个主PE和多个从PE的收缩阵列结构,用于FPGA上的细粒度硬件实现。我们利用数据重用方案来减少从外部存储器加载能量矩阵的需要。我们还提出了几种将能量表参数大小减少85%的方法。据我们所知,我们的16 pe实现是唯一实现完整Zuker算法的FPGA加速器。实验结果表明,在Pentium 4 2.6 GHz CPU的PC平台上,使用ViennaRNA-1.6.5软件对2981残基RNA序列进行处理,速度提高了14倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信