What’s on your mind? A Mental and Perceptual Load Estimation Framework towards Adaptive In-vehicle Interaction while Driving

Amr Gomaa, Alexandra Alles, Elena Meiser, L. Rupp, Marco Molz, Guillermo Reyes
{"title":"What’s on your mind? A Mental and Perceptual Load Estimation Framework towards Adaptive In-vehicle Interaction while Driving","authors":"Amr Gomaa, Alexandra Alles, Elena Meiser, L. Rupp, Marco Molz, Guillermo Reyes","doi":"10.1145/3543174.3546840","DOIUrl":null,"url":null,"abstract":"Several researchers have focused on studying driver cognitive behavior and mental load for in-vehicle interaction while driving. Adaptive interfaces that vary with mental and perceptual load levels could help in reducing accidents and enhancing the driver experience. In this paper, we analyze the effects of mental workload and perceptual load on psychophysiological dimensions and provide a machine learning-based framework for mental and perceptual load estimation in a dual task scenario for in-vehicle interaction (https://github.com/amrgomaaelhady/MWL-PL-estimator). We use off-the-shelf non-intrusive sensors that can be easily integrated into the vehicle’s system. Our statistical analysis shows that while mental workload influences some psychophysiological dimensions, perceptual load shows little effect. Furthermore, we classify the mental and perceptual load levels through the fusion of these measurements, moving towards a real-time adaptive in-vehicle interface that is personalized to user behavior and driving conditions. We report up to 89% mental workload classification accuracy and provide a real-time minimally-intrusive solution.","PeriodicalId":284749,"journal":{"name":"Proceedings of the 14th International Conference on Automotive User Interfaces and Interactive Vehicular Applications","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th International Conference on Automotive User Interfaces and Interactive Vehicular Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3543174.3546840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Several researchers have focused on studying driver cognitive behavior and mental load for in-vehicle interaction while driving. Adaptive interfaces that vary with mental and perceptual load levels could help in reducing accidents and enhancing the driver experience. In this paper, we analyze the effects of mental workload and perceptual load on psychophysiological dimensions and provide a machine learning-based framework for mental and perceptual load estimation in a dual task scenario for in-vehicle interaction (https://github.com/amrgomaaelhady/MWL-PL-estimator). We use off-the-shelf non-intrusive sensors that can be easily integrated into the vehicle’s system. Our statistical analysis shows that while mental workload influences some psychophysiological dimensions, perceptual load shows little effect. Furthermore, we classify the mental and perceptual load levels through the fusion of these measurements, moving towards a real-time adaptive in-vehicle interface that is personalized to user behavior and driving conditions. We report up to 89% mental workload classification accuracy and provide a real-time minimally-intrusive solution.
你在想什么?面向自适应驾驶时车内交互的心理和感知负荷估计框架
一些研究者一直致力于研究驾驶员在驾驶过程中的认知行为和心理负荷。随着心理和感知负荷水平的变化而变化的自适应界面可以帮助减少事故并提高驾驶员的体验。在本文中,我们分析了心理负荷和知觉负荷对心理生理维度的影响,并提供了一个基于机器学习的框架来估计车内交互双任务场景下的心理负荷和知觉负荷(https://github.com/amrgomaaelhady/MWL-PL-estimator)。我们使用现成的非侵入式传感器,可以很容易地集成到车辆系统中。我们的统计分析表明,虽然心理负荷会影响某些心理生理维度,但感知负荷的影响很小。此外,我们通过这些测量的融合对心理和感知负荷水平进行分类,朝着实时自适应车载界面的方向发展,该界面可根据用户行为和驾驶条件进行个性化。我们报告高达89%的心理工作负载分类准确率,并提供实时的最小干扰解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信