Parameter estimation of a mathematical model describing the cardiovascular-respiratory interaction

Layli S. Goldoozian, A. Hidalgo-Muñoz, V. Zarzoso, E. Zahedi
{"title":"Parameter estimation of a mathematical model describing the cardiovascular-respiratory interaction","authors":"Layli S. Goldoozian, A. Hidalgo-Muñoz, V. Zarzoso, E. Zahedi","doi":"10.1109/CIC.2015.7410986","DOIUrl":null,"url":null,"abstract":"Short-term interaction between heart rate (HR) and physiological measures like blood pressure and respiration reveals relevant information about autonomic nervous system (ANS) function. Complex mathematical models for describing their couplings have been proposed in the literature. However, an accurate estimation of their parameters in an inverse modeling problem is crucial to extract reliable ANS related indices. This study considers a physiologically-based model of the cardiovascular-respiratory system and ANS control that presents the neural and mechanical effects of respiration separately. The estimation method is evaluated on synthetic signals. An accurate estimation of the highest-sensitivity model parameter (intrinsic HR) is achieved with an error of 4:7 ± 3:4% over the actual values. One of the parameters reflecting the amplitude of the respiratory-mediated variations presents an even better approximation with a mean relative error as low as 3:8±3:3%. Our results show that most of the high-sensitivity parameters and also respiratory-related parameters that are specifically considered in our physiologically-based framework can be well approximated regardless of their initial values.","PeriodicalId":414802,"journal":{"name":"2015 Computing in Cardiology Conference (CinC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Computing in Cardiology Conference (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.2015.7410986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Short-term interaction between heart rate (HR) and physiological measures like blood pressure and respiration reveals relevant information about autonomic nervous system (ANS) function. Complex mathematical models for describing their couplings have been proposed in the literature. However, an accurate estimation of their parameters in an inverse modeling problem is crucial to extract reliable ANS related indices. This study considers a physiologically-based model of the cardiovascular-respiratory system and ANS control that presents the neural and mechanical effects of respiration separately. The estimation method is evaluated on synthetic signals. An accurate estimation of the highest-sensitivity model parameter (intrinsic HR) is achieved with an error of 4:7 ± 3:4% over the actual values. One of the parameters reflecting the amplitude of the respiratory-mediated variations presents an even better approximation with a mean relative error as low as 3:8±3:3%. Our results show that most of the high-sensitivity parameters and also respiratory-related parameters that are specifically considered in our physiologically-based framework can be well approximated regardless of their initial values.
描述心血管-呼吸相互作用的数学模型的参数估计
心率(HR)与血压、呼吸等生理指标之间的短期相互作用揭示了自主神经系统(ANS)功能的相关信息。在文献中已经提出了复杂的数学模型来描述它们的耦合。然而,在反建模问题中,准确估计它们的参数对于提取可靠的ANS相关指标至关重要。本研究考虑了心血管呼吸系统和ANS控制的生理基础模型,分别呈现呼吸的神经和机械效应。在合成信号上对该估计方法进行了验证。对最高灵敏度模型参数(固有HR)的准确估计与实际值的误差为4:7±3:4%。其中一个反映呼吸介导的变化幅度的参数表现出更好的近似,平均相对误差低至3:8±3:3%。我们的研究结果表明,在我们基于生理学的框架中特别考虑的大多数高灵敏度参数和呼吸相关参数都可以很好地近似,而不管它们的初始值如何。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信