Short-Term Forecasting of Photovoltaic Power Integrating Multi-Temporal Meteorological Satellite Imagery in Deep Neural Network

Hunsoo Song, Gwangioong Kim, Minho Kim, Yongil Kim
{"title":"Short-Term Forecasting of Photovoltaic Power Integrating Multi-Temporal Meteorological Satellite Imagery in Deep Neural Network","authors":"Hunsoo Song, Gwangioong Kim, Minho Kim, Yongil Kim","doi":"10.1109/APPEEC45492.2019.8994616","DOIUrl":null,"url":null,"abstract":"Remotely-sensed satellite imagery offers crucial information on the atmosphere and the local environment, providing a broader perspective for more accurate photovoltaic (PV) power prediction. This study proposes a Deep Neural Network (DNN) framework which integrates meteorological satellite images with historical PV power output data to conduct short-term PV power prediction (2-hour ahead). For this study, Communication, Ocean, and Meteorological Satellite (COMS) was used, and the proposed model was evaluated on test sites in Yeongam and Jindo, South Korea. The proposed DNN model was able to consider the variations of atmospheric condition and successfully learn the complex meteorological patterns by using multi-temporal COMS satellite images stacked with historical PV data. The experiment on historical PV power output, compiled over three years from 2015 to 2017, confirms that the integration of multi-temporal satellite images is more accurate than using single mono-temporal satellite image in short-term PV power prediction.","PeriodicalId":241317,"journal":{"name":"2019 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APPEEC45492.2019.8994616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Remotely-sensed satellite imagery offers crucial information on the atmosphere and the local environment, providing a broader perspective for more accurate photovoltaic (PV) power prediction. This study proposes a Deep Neural Network (DNN) framework which integrates meteorological satellite images with historical PV power output data to conduct short-term PV power prediction (2-hour ahead). For this study, Communication, Ocean, and Meteorological Satellite (COMS) was used, and the proposed model was evaluated on test sites in Yeongam and Jindo, South Korea. The proposed DNN model was able to consider the variations of atmospheric condition and successfully learn the complex meteorological patterns by using multi-temporal COMS satellite images stacked with historical PV data. The experiment on historical PV power output, compiled over three years from 2015 to 2017, confirms that the integration of multi-temporal satellite images is more accurate than using single mono-temporal satellite image in short-term PV power prediction.
基于多时相气象卫星影像的光伏发电短期预测深度神经网络
遥感卫星图像提供了关于大气和当地环境的重要信息,为更准确的光伏发电(PV)功率预测提供了更广阔的视角。本研究提出了一种深度神经网络(Deep Neural Network, DNN)框架,该框架将气象卫星图像与历史光伏功率输出数据相结合,进行短期(提前2小时)光伏功率预测。在这项研究中,使用了通信、海洋和气象卫星(COMS),并在韩国燕岩和珍岛的试验场对所提出的模型进行了评估。本文提出的深度神经网络模型能够考虑大气条件的变化,并通过叠加历史PV数据的多时相COMS卫星图像成功地学习到复杂的气象模式。通过2015 - 2017年3年的历史光伏发电输出实验,证实了多时相卫星图像的整合比单时相卫星图像更准确地预测了短期光伏发电功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信