Estimation of ungauged Hwanggang dam inflow using Sentinel-2 optical satellite imagery

Jingyeom Kim
{"title":"Estimation of ungauged Hwanggang dam inflow using Sentinel-2 optical satellite imagery","authors":"Jingyeom Kim","doi":"10.3741/JKWRA.2021.54.4.265","DOIUrl":null,"url":null,"abstract":"The Hwanggang Dam in North Korea is located upstream of the Imjin River which is a shared river on the border. It is known to have a reservoir capacity of 350 million cubic meters, which is about 1.5 times larger than Paldang Dam in South Korea, and releases a discharge largely for generating hydroelectric power and partly for transferring to the Yesung River basin. Due to the special national security issues in the region, data sharing between the south and north Koreas is not made, and flood damage risk due to heavy storm and unauthorized discharge is remained in the south Korean-side downstream region. However, It is still difficult to forecast the flood because the operating information of the Hwanggang Dam is not shared. In this study, a dam inflow and reservoir water level change modeling system was constructed using lumped hydrological model and reservoir operation algorithm based on AutoROM. Dam inflow was verified indirectly using remotely sensed water level derived by Sentinel-2 optical satellite and 10m high-resolution terrain map. Coefficient of determination (R2) derived as 0.76 for water level changing from Jan. 2017 to Aug. 2020.","PeriodicalId":224359,"journal":{"name":"Journal of Korea Water Resources Association","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Korea Water Resources Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3741/JKWRA.2021.54.4.265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Hwanggang Dam in North Korea is located upstream of the Imjin River which is a shared river on the border. It is known to have a reservoir capacity of 350 million cubic meters, which is about 1.5 times larger than Paldang Dam in South Korea, and releases a discharge largely for generating hydroelectric power and partly for transferring to the Yesung River basin. Due to the special national security issues in the region, data sharing between the south and north Koreas is not made, and flood damage risk due to heavy storm and unauthorized discharge is remained in the south Korean-side downstream region. However, It is still difficult to forecast the flood because the operating information of the Hwanggang Dam is not shared. In this study, a dam inflow and reservoir water level change modeling system was constructed using lumped hydrological model and reservoir operation algorithm based on AutoROM. Dam inflow was verified indirectly using remotely sensed water level derived by Sentinel-2 optical satellite and 10m high-resolution terrain map. Coefficient of determination (R2) derived as 0.76 for water level changing from Jan. 2017 to Aug. 2020.
利用Sentinel-2光学卫星图像估算未测量的黄江大坝入水量
北韩的黄江坝位于两国共有的临津江上游。据悉,水库容量为3.5亿立方米,是八堂水坝的1.5倍,主要用于水力发电,部分用于向礼成江流域输送水。由于该地区特殊的国家安全问题,南北韩之间没有进行数据共享,在下游地区韩国方面仍然存在因暴雨和未经许可的排放而造成的洪涝灾害风险。但是,由于黄江坝的运行信息不公开,因此很难预测洪涝灾害。基于AutoROM的集总水文模型和水库运行算法,构建了大坝入库水位变化建模系统。利用Sentinel-2光学卫星遥感水位和10m高分辨率地形图间接验证了大坝入流情况。2017年1月至2020年8月水位变化的决定系数(R2)为0.76。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信