A Guide to Design Disturbance Observer-based Motion Control Systems in Discrete-time Domain

E. Sariyildiz
{"title":"A Guide to Design Disturbance Observer-based Motion Control Systems in Discrete-time Domain","authors":"E. Sariyildiz","doi":"10.1109/ICM46511.2021.9385674","DOIUrl":null,"url":null,"abstract":"This paper analyses and synthesises the Disturbance Observer (DOb) based motion control systems in the discrete-time domain. By employing Bode Integral Theorem, it is shown that continuous-time analysis methods fall-short in explaining the dynamic behaviours of the DOb-based robust motion controllers implemented by computers and microcontrollers. For example, continuous-time analysis methods cannot explain why the robust stability and performance of the digital motion controller deteriorate as the bandwidth of the DOb increases. Therefore, unexpected dynamic responses (e.g., poor stability and performance, and high-sensitivity to disturbances and noise) may be observed when the parameters of the digital robust motion controller are tuned by using continuous-time synthesis methods in practice. This paper also analytically derives the robust stability and performance constraints of the DOb-based motion controllers in the discrete-time domain. The proposed design constraints allow one to systematically synthesise a high-performance digital robust motion controller. The validity of the proposed analysis and synthesis methods are verified by simulations.","PeriodicalId":373423,"journal":{"name":"2021 IEEE International Conference on Mechatronics (ICM)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Mechatronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM46511.2021.9385674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper analyses and synthesises the Disturbance Observer (DOb) based motion control systems in the discrete-time domain. By employing Bode Integral Theorem, it is shown that continuous-time analysis methods fall-short in explaining the dynamic behaviours of the DOb-based robust motion controllers implemented by computers and microcontrollers. For example, continuous-time analysis methods cannot explain why the robust stability and performance of the digital motion controller deteriorate as the bandwidth of the DOb increases. Therefore, unexpected dynamic responses (e.g., poor stability and performance, and high-sensitivity to disturbances and noise) may be observed when the parameters of the digital robust motion controller are tuned by using continuous-time synthesis methods in practice. This paper also analytically derives the robust stability and performance constraints of the DOb-based motion controllers in the discrete-time domain. The proposed design constraints allow one to systematically synthesise a high-performance digital robust motion controller. The validity of the proposed analysis and synthesis methods are verified by simulations.
基于扰动观测器的离散时域运动控制系统设计指南
本文对基于扰动观测器的离散时域运动控制系统进行了分析和综合。利用波德积分定理,证明了连续时间分析方法在解释由计算机和微控制器实现的基于dob的鲁棒运动控制器的动态行为方面存在不足。例如,连续时间分析方法无法解释为什么数字运动控制器的鲁棒稳定性和性能会随着DOb带宽的增加而恶化。因此,在实际应用中,采用连续时间合成方法对数字鲁棒运动控制器的参数进行调谐时,可能会出现意想不到的动态响应(如稳定性和性能差,对干扰和噪声的敏感性高)。本文还解析导出了基于dob的运动控制器在离散时域的鲁棒稳定性和性能约束。所提出的设计约束允许系统地合成高性能数字鲁棒运动控制器。仿真结果验证了所提分析和综合方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信