Efficient test-based model generation for legacy reactive systems

T. Margaria, Oliver Niese, Harald Raffelt, B. Steffen
{"title":"Efficient test-based model generation for legacy reactive systems","authors":"T. Margaria, Oliver Niese, Harald Raffelt, B. Steffen","doi":"10.1109/HLDVT.2004.1431246","DOIUrl":null,"url":null,"abstract":"We present the effects of using an efficient algorithm for behavior-based model synthesis which is specifically tailored to reactive (legacy) system behaviors. Conceptual backbone is the classical automata learning procedure L*, which we adapt according to the considered application profile. The resulting learning procedure L*Meal , which directly synthesizes generalized Mealy automata from behavioral observations gathered via an automated test environment, drastically outperforms the classical learning algorithm for deterministic finite automata. Thus it marks a milestone towards opening industrial legacy systems to model-based test suite enhancement, test coverage analysis, and online testing.","PeriodicalId":240214,"journal":{"name":"Proceedings. Ninth IEEE International High-Level Design Validation and Test Workshop (IEEE Cat. No.04EX940)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"83","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Ninth IEEE International High-Level Design Validation and Test Workshop (IEEE Cat. No.04EX940)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HLDVT.2004.1431246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 83

Abstract

We present the effects of using an efficient algorithm for behavior-based model synthesis which is specifically tailored to reactive (legacy) system behaviors. Conceptual backbone is the classical automata learning procedure L*, which we adapt according to the considered application profile. The resulting learning procedure L*Meal , which directly synthesizes generalized Mealy automata from behavioral observations gathered via an automated test environment, drastically outperforms the classical learning algorithm for deterministic finite automata. Thus it marks a milestone towards opening industrial legacy systems to model-based test suite enhancement, test coverage analysis, and online testing.
为遗留响应系统高效地生成基于测试的模型
我们介绍了使用一种有效的算法进行基于行为的模型综合的效果,该算法专门针对反应性(遗留)系统行为进行定制。概念主干是经典的自动机学习过程L*,我们根据所考虑的应用概况对其进行了调整。由此产生的学习过程L*Meal,直接从通过自动化测试环境收集的行为观察中合成广义Mealy自动机,大大优于确定性有限自动机的经典学习算法。因此,它标志着将工业遗留系统向基于模型的测试套件增强、测试覆盖分析和在线测试开放的一个里程碑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信