T. Margaria, Oliver Niese, Harald Raffelt, B. Steffen
{"title":"Efficient test-based model generation for legacy reactive systems","authors":"T. Margaria, Oliver Niese, Harald Raffelt, B. Steffen","doi":"10.1109/HLDVT.2004.1431246","DOIUrl":null,"url":null,"abstract":"We present the effects of using an efficient algorithm for behavior-based model synthesis which is specifically tailored to reactive (legacy) system behaviors. Conceptual backbone is the classical automata learning procedure L*, which we adapt according to the considered application profile. The resulting learning procedure L*Meal , which directly synthesizes generalized Mealy automata from behavioral observations gathered via an automated test environment, drastically outperforms the classical learning algorithm for deterministic finite automata. Thus it marks a milestone towards opening industrial legacy systems to model-based test suite enhancement, test coverage analysis, and online testing.","PeriodicalId":240214,"journal":{"name":"Proceedings. Ninth IEEE International High-Level Design Validation and Test Workshop (IEEE Cat. No.04EX940)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"83","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Ninth IEEE International High-Level Design Validation and Test Workshop (IEEE Cat. No.04EX940)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HLDVT.2004.1431246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 83
Abstract
We present the effects of using an efficient algorithm for behavior-based model synthesis which is specifically tailored to reactive (legacy) system behaviors. Conceptual backbone is the classical automata learning procedure L*, which we adapt according to the considered application profile. The resulting learning procedure L*Meal , which directly synthesizes generalized Mealy automata from behavioral observations gathered via an automated test environment, drastically outperforms the classical learning algorithm for deterministic finite automata. Thus it marks a milestone towards opening industrial legacy systems to model-based test suite enhancement, test coverage analysis, and online testing.