New interpolation algorithms for multiple-valued Reed-Muller forms

Z. Zilic, Z. Vranesic
{"title":"New interpolation algorithms for multiple-valued Reed-Muller forms","authors":"Z. Zilic, Z. Vranesic","doi":"10.1109/ISMVL.1996.508330","DOIUrl":null,"url":null,"abstract":"This paper presents new algorithms for the sparse multivariate polynomial interpolation over finite fields, which can be used for optimizing Reed-Muller forms for MVL functions. Starting with a quadratic time interpolation algorithm for Boolean functions, we develop a method that decomposes the problem into several smaller problems for the MVL case. We then show how each of these problems can be solved by a practical probabilistic algorithm. The approach is extended to fixed polarity RM forms, in which the complexity of the resulting forms becomes simpler and also the running lime of the algorithm is reduced.","PeriodicalId":403347,"journal":{"name":"Proceedings of 26th IEEE International Symposium on Multiple-Valued Logic (ISMVL'96)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 26th IEEE International Symposium on Multiple-Valued Logic (ISMVL'96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1996.508330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents new algorithms for the sparse multivariate polynomial interpolation over finite fields, which can be used for optimizing Reed-Muller forms for MVL functions. Starting with a quadratic time interpolation algorithm for Boolean functions, we develop a method that decomposes the problem into several smaller problems for the MVL case. We then show how each of these problems can be solved by a practical probabilistic algorithm. The approach is extended to fixed polarity RM forms, in which the complexity of the resulting forms becomes simpler and also the running lime of the algorithm is reduced.
多值Reed-Muller形式的新插值算法
本文提出了有限域上稀疏多元多项式插值的新算法,可用于优化MVL函数的Reed-Muller形式。从布尔函数的二次时间插值算法开始,我们开发了一种将MVL情况下的问题分解为几个较小问题的方法。然后,我们将展示如何通过实用的概率算法来解决这些问题。将该方法扩展到固定极性RM形式,简化了生成形式的复杂性,减少了算法的运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信