A Convolutional Neural Network Model for Road Flow Direction Detection

Vedat Tumen, Ozal Yildirim, B. Ergen
{"title":"A Convolutional Neural Network Model for Road Flow Direction Detection","authors":"Vedat Tumen, Ozal Yildirim, B. Ergen","doi":"10.54856/jiswa.201912072","DOIUrl":null,"url":null,"abstract":"It is an important work area to determine realtime characteristics of roads where vehicles are in motion in critical areas where artificial intelligence is effectively used, such as driverless vehicles. The purpose of this article work is to present a deeper learning method that will allow a vehicle in motion to detect the direction of flow in the path. Convolutional Neural Networks (KSA) have been used as deep learning models for the determination of the direction of flow (YAY) in the study. The YAY-KSA model developed for flow direction detection is applied on 587 real road images in the CMU VASC image database. To compare the performances of the prepared model, Cifar model which is a common KSA model was applied on the same data. According to the classification results obtained, it was seen that the designed YAY-KSA model correctly determined flow direction at 80.1% level.","PeriodicalId":112412,"journal":{"name":"Journal of Intelligent Systems with Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54856/jiswa.201912072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is an important work area to determine realtime characteristics of roads where vehicles are in motion in critical areas where artificial intelligence is effectively used, such as driverless vehicles. The purpose of this article work is to present a deeper learning method that will allow a vehicle in motion to detect the direction of flow in the path. Convolutional Neural Networks (KSA) have been used as deep learning models for the determination of the direction of flow (YAY) in the study. The YAY-KSA model developed for flow direction detection is applied on 587 real road images in the CMU VASC image database. To compare the performances of the prepared model, Cifar model which is a common KSA model was applied on the same data. According to the classification results obtained, it was seen that the designed YAY-KSA model correctly determined flow direction at 80.1% level.
一种用于道路流方向检测的卷积神经网络模型
在有效利用人工智能的关键领域,如无人驾驶汽车,确定车辆行驶道路的实时特征是一个重要的工作领域。本文工作的目的是提出一种更深入的学习方法,该方法将允许运动中的车辆检测路径中的流量方向。在研究中,卷积神经网络(KSA)被用作确定流动方向(YAY)的深度学习模型。将YAY-KSA模型应用于CMU VASC图像数据库中的587张真实道路图像的方向检测。为了比较所制备的模型的性能,在相同的数据上应用了常用的KSA模型Cifar模型。从得到的分类结果可以看出,所设计的YAY-KSA模型在80.1%水平下正确地确定了流动方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信