Automated Product Localization Through Mobile Data Analysis

M. Oplenskedal, Amirhosein Taherkordi, P. Herrmann
{"title":"Automated Product Localization Through Mobile Data Analysis","authors":"M. Oplenskedal, Amirhosein Taherkordi, P. Herrmann","doi":"10.1109/MDM.2019.00-78","DOIUrl":null,"url":null,"abstract":"Recent developments in the field of indoor RealTime Locating Systems (RTLS) using mobile devices stimulate decision support for users. For instance, smartphone-based navigation in shops can enable location-aware recommendations of certain products to customers. An impeding factor to realize such systems is that they need the exact position of products. Existing product localization solutions, however, are based on tagging or manual location registering which tend to be quite costly and laborious. In this paper, we propose an automated product localization approach solving this problem. Our system infers the location of products based on the results of accumulating two sets of customer data, i.e., the locations at which the customers stop for picking up items as well as the list of the items, they purchase. These two data sets are accumulated for a large number of users, making it possible to build correct mappings between the products and their positions. We introduce a basic version of our localization algorithm and two extensions. One helps to improve calculating the position of relocated products while the other one fosters a faster localization using a smaller number of user data sets. We discuss the results of various simulation runs which give evidence that our system has a good potential to work in practice","PeriodicalId":241426,"journal":{"name":"2019 20th IEEE International Conference on Mobile Data Management (MDM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th IEEE International Conference on Mobile Data Management (MDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDM.2019.00-78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recent developments in the field of indoor RealTime Locating Systems (RTLS) using mobile devices stimulate decision support for users. For instance, smartphone-based navigation in shops can enable location-aware recommendations of certain products to customers. An impeding factor to realize such systems is that they need the exact position of products. Existing product localization solutions, however, are based on tagging or manual location registering which tend to be quite costly and laborious. In this paper, we propose an automated product localization approach solving this problem. Our system infers the location of products based on the results of accumulating two sets of customer data, i.e., the locations at which the customers stop for picking up items as well as the list of the items, they purchase. These two data sets are accumulated for a large number of users, making it possible to build correct mappings between the products and their positions. We introduce a basic version of our localization algorithm and two extensions. One helps to improve calculating the position of relocated products while the other one fosters a faster localization using a smaller number of user data sets. We discuss the results of various simulation runs which give evidence that our system has a good potential to work in practice
通过移动数据分析实现自动化产品本地化
使用移动设备的室内实时定位系统(RTLS)领域的最新发展刺激了用户的决策支持。例如,商店中基于智能手机的导航可以为顾客提供特定产品的位置感知推荐。实现这种系统的一个阻碍因素是它们需要产品的精确位置。然而,现有的产品本地化解决方案是基于标记或手动位置注册,这往往是相当昂贵和费力的。在本文中,我们提出了一种自动化的产品定位方法来解决这个问题。我们的系统根据积累两组客户数据的结果推断出产品的位置,即客户停下来取货的位置以及他们购买的商品列表。这两个数据集是为大量用户积累的,因此可以在产品和它们的位置之间建立正确的映射。我们介绍了定位算法的一个基本版本和两个扩展。一个有助于改进重新定位产品的位置计算,而另一个使用更少的用户数据集促进更快的定位。讨论了各种模拟运行的结果,证明该系统具有良好的实际应用潜力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信